
Creative Software Programming

1 - Course Intro

Yoonsang Lee

Fall 2019

Course Information

• Instructor: Yoonsang Lee (이윤상)

– yoonsanglee@hanyang.ac.kr

• TA: Kyoungho Ku (구경호)

– rnrudgh@gmail.com

• Course Hompage

– The course page at portal.hanyang.ac.kr (or
learn.hanyang.ac.kr)

– Slides will be uploaded to Course Content(코스콘텐츠) –
Lecture Slides as soon as it is ready, but they may be updated
until just before the lecture.

Course Overview

• In this course, you will

– Learn the fundamentals of C++ language

• key concepts of object-oriented programming such as classes,

inheritance, and polymorphism

• references, pointers, dynamic allocation

– Practice programming skills by writing many exercise

programs

– Practice using development tools and editors in

Unix/Linux environment.

References

• Beginner's book:

– C++ Primer Plus (6th edition), Sthephen Prata

• For deeper understanding:

– Effective C++ (3rd edition), Scott Meyers

– More Effective C++, Scott Meyers

– Effective STL, Scott Meyers

– Effective Modern C++, Scott Meyers

Prerequisites

• Introduction to Software Design (소프트웨어입

문설계)

• C programming language

• However, we’ll have a brief review lectures about

C pointers / structures at the beginning of this

course.

Schedule (subject to change)

Week Topic Tue Wed Thr

1 1 - Course Intro / Lab - Environment Setting 9/3 9/4 9/5

2 2 - Review of C Pointer and Structure 9/10 9/11 9/12

3 3 - Review C Pointer&Const, Difference btwn C & C++ 9/17 9/18 9/19

4 4 - Dynamic Memory Allocation, References 9/24 9/25 9/26

5 5 - Compilation and Linkage 10/1 10/2 10/3

6 6 - Class 10/8 10/9 10/10

7 7 - Standard Template Library (STL) 10/15 10/16 10/17

8 Midterm Exam 10/22 10/23 10/24

9 8 - Inheritance 10/29 10/30 10/31

10 9 - Polymorphism 1 11/5 11/6 11/7

11 10 - Polymorphism 2 11/12 11/13 11/14

12 11 – Copy Constructor, Operator Overloading 11/19 11/20 11/21

13 12 - Template 11/26 11/27 11/28

14 13 - Exception Handling 12/3 12/4 12/5

15 No Class 12/10 12/11 12/12

16 Final Exam 12/17 12/18 12/19

IMPORTANT!! Midterm / Final Exam

• Midterm exam: 19:00~21:00, October 21 (Mon)

• Final exam : 19:00~21:00, December 16 (Mon)

• Make sure you don't have any other plan at these

times.

• If this schedule is not available to you, plz take

another class.

Lectures & Labs

• Lecture (Tue) + Labs (Wed, Thu)

• Lecture (by instructor)

– Traditional classroom-based learning.

• Labs (by TA)

– Time for solving assignment problems by yourselves.

– TA and undergraduate mentors will help you.

Assignments

• 1 assignment per each lab session.

• TA and undergraduate mentors will help you to

solve the problems.

– You can ask questions!

• Lab1(Wed) assignment due: 23:59 on the day.

• Lab2(Thu) assignment due: 23:59 on next Tue.

Policy for Assignments

• NO SCORE for late submissions

– Submit before the deadline!

• NO SCORE for copying

– If A copies B's code, A and B will get 0 point.

– If A, B, C copies the same code from the internet, they

will all get 0 point.

– Collaboration is encouraged, but assignments must be

your own work.

About Laptop

• Lecture

– The lecture slides contains many C++ code.

– I recommend you to bring your laptop at lecture time so that

you can compile & run code during the lecture.

• Lab

– The lab is held in a laptop-only training room.

– If you want to borrow a laptop, contact the TA by email until

the lab in this week.

– But, I strongly recommend you to bring your laptop at lab

sessions.

• To avoid F, you have to attend at least 9 lectures

&& 18 labs

• Absences from midterm or final exam -> F

Midterm exam 35%

Final exam 35%

Assignments 20%

Attendance 5%

Class attitude 5%

Grading

CAUTION: Penalty & ABF

• Grade penalty:

– 3rd year (junior) students: max grade A0

– 4th year (senior) students: max grade B+

• ABF course:

– Final grade will be given as one of A, B or F.

– At least 10% of students will be given F.

– F is given only by your scores regardless of how much is

left to graduate, so 4th year students should be very

careful to take this course.

Grading Policy

• Basic principle: Separating the grades where there

is a big gap between scores.

• Guideline:

A 30%

B 55%~60%

F 10%~15%

Language

• I will mainly use English in lectures.

• But the most important goal is improving your
understanding, both for English and non-English speakers.

– So, I’ll “paraphrase” the explanation in Korean for most slides.

• In lab sessions, TA will try to use English.

– You can ask TA personally in Korean.

– Of course, TA will try to give answers in English when asked in
English.

• Now, let’s have a brief summary for prev. slides in Korean.

Classroom Etiquette

• DO NOT negatively affect other students in the

classroom. For example,

– Doing other things (e.g. games) with your computer

– Using your phone for a long time

– Private conversation

– Sleeping on a desk

• May be reflected in "Class attitude" in your grade

Computer Science

Computer science (abbreviated CS or CompSci) is the

scientific and practical approach to computation and its

applications.

It is the systematic study of the feasibility, structure,

expression, and mechanization of the methodical processes

(or algorithms) that underlie the acquisition, representation,

processing, storage, communication of, and access to

information, whether such information is encoded in bits

and bytes in a computer memory or transcribed engines and

protein structures in a human cell.

http://en.wikipedia.org/wiki/Computer_science

http://en.wikipedia.org/wiki/Computer_science

Areas of Computer Science

Automata
theory

Cryptography
Quantum
computing

Algorithm
s

Data
structure

Programming
language

Compiler
design

Operating
system

Database
Computer
network

BioinformaticsHCI
Machine
learning

Computer
vision

Robotics

http://en.wikipedia.org/wiki/Computer_
science

Computer
graphics

http://en.wikipedia.org/wiki/Computer_science

Programming

You already have learned how to make simple programs in Python
and C, but let’s revisit the basics.

● Programming language.

● Computer hardware.

● Operating system and development environment.

● Data structure and algorithm.

● Coding style, collaboration, source management (version
control).

Programming is the comprehensive process that leads from an
original formulation of a computing problem to executable
programs. [wikipedia]

Programming Language

A formal language designed to communicate instructions to a computer.

● Syntax and semantics.

○ Language syntax and constructs.

○ Type checking - strongly typed languages.

● Standard library and running environment.

○ Tightly related to the operating system and compiler.

In this class, we learn/use ...

● C++ programming language

● Linux operating system

● G++ compiler, build tools like make, debugger like gdb, and more

Computer Hardware

● Von Neumann architecture.

○ Main components are CPU and memory.

○ Both program and data are stored in the memory

(stored-program computer).

○ When a program is executed, the instructions are fetched from the

memory, then decoded for execution.

● Virtual memory.

○ The memory space that a program sees is

a continuous linear

address space.

Operating System and Dev. Environment

● The operating system is in charge of

○ resource management, including CPU and memory

(time-sharing and virtual memory),

○ input/output (I/O) operations and file management, and

○ execution and termination of programs.

● Development environment

○ IDE (Integrated -) : Visual Studio, Eclipse, IntelliJ, CLion...

○ Text editor, basic text tools +

Compiler, linker, debugger, profiler +

Build system, source management tools, etc.

○ vim, emacs, nano, grep, find, diff, …

g++, gcc, gdb, cgdb, …

make, cmake, svn, git, ...

Data Structure and Algorithm

Programming starts with designing data structures and algorithms to solve

the given problem.

● Data structure = how is the information stored?

○ Array (fixed-size, dynamically allocated)

○ Linked list (doubly-), stack, queue, deque,

○ Strings,

○ Trees (binary, B-), graphs, ...

● Algorithms = how is the information processed?

○ Sorting, searching, matching (regular expression),

○ Keeping a tree balanced, path finding in a graph, etc.

Collaboration and Source Management

Large programs are almost always built by multiple programmers over long

period of time.

● Coding style = how to format the code?

○ Nothing to do with the program performance, but

○ Very important for human programmers to easily collaborate.

○ Tabs vs spaces, 80-column or not, blanks before/after operators,

braces in a new line or in the same line, etc.

● Multiple versions of code edited by multiple programmers.

○ Share the code and manage multiple versions.

○ Review the changes and merge them without breaking the existing

system.

○ Release management, etc.

Interactive C++

● Interactive environment helps learning a programming language,

libraries, and other tools.

• Cling

○ https://cdn.rawgit.com/root-project/cling/master/www/index.html

○ Linux and Mac OS X (Windows via its Ubuntu support)

● C++ Tutor

○ http://www.pythontutor.com/cpp.html#mode=edit

○ Visualizes the execution of c++ program (experimental)

https://cdn.rawgit.com/root-project/cling/master/www/index.html
http://www.pythontutor.com/cpp.html#mode=edit

Interactive C++

• Cling Demo

• C++ Tutor Demo

#include <iostream>

int main() {

std::cout << "hello_world\n"; // Print hello_world.

return 0;

}

Questions – Slido.com

• I know very well how uncomfortable it is to ask

questions in the middle of class.

• To encourage questions, we’ll use an online,

anonymous Q&A platform – slido.com

Just Try It!

• Go to https://www.slido.com/

• Join #csp-hyu

• Ask any questions in English!

– You can use Google Translator if you have difficulty

writing in English.

https://www.slido.com/

Questions – Slido.com

• In slido.com, you can

– Ask your own questions

– Upvote other questions

• We’ll use the slido Q&A only during lecture time.

– Not after lecture time

– Not in lab sessions

– No written answers

• Please ask questions anonymously.

– Just leave your name blank when post a question.

Quiz & Attendance – Slido.com

• 3 quiz problems per each lecture (using slido.com

poll).

• Simple questions – you have to submit in two

minutes.

• I’ll check attendance using quiz submission.

Quiz & Attendance – Slido.com

• You MUST submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Attendance checking:

– 3 lates are regarded as 1 absence.

Attendance Number of submissions in the format - 3 times

&& You are in the classroom

Late Number of submissions in the format – 1~2 times

&& You are in the classroom

Absence Number of submissions in the format – 0 times

|| You are NOT in the classroom

Quiz & Attendance – Slido.com

• If submitting a quiz answer without attending the

class is detected,

• I think he or she has been also absent from the

previous lecture.

• -> Check as “Absence” for these two lectures

Just Try a Quiz!

• Go to https://www.slido.com/

• Join #csp-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit ALL quiz answers in this

format to be checked as “attendance”.

https://www.slido.com/

Lastly...

• If you agree on all the policies in this slides, see

you this week’s lab session!

• If not, please consider taking other classes instead.

Next Time

• Labs in this week:

– Lab1: Environment Setting, Git / Gitlab, Vim

– Lab2: g++, make, gdb

• Next lecture:

– Review of C Pointer and Structure

