
VMware

• If you can't set the Virtual Box, try using VMware



VMware

• VMware workstation player is free software.



VMware



VMware



VMware



Open Terminal



VMware

• Set memory up to half of your laptop's capacity



What are we doing.

Operating System

Application

Hardware

Application Application



What are we doing.

Operating System( Window )

Application

Hardware ( CPU, DRAM, SSD )

Application Application



What are we doing.

Operating System( Window )

Application

Hardware ( CPU, DRAM, SSD )

Application

Hypervisor(virtual Box or VMware)

Guest Operating System
( Ubuntu )

Application Application



What are we doing.

Operating System( Window )

Application

Hardware ( CPU, DRAM, SSD )

Application

Hypervisor(virtual Box or VMware)

Guest Operating System
( Ubuntu )

Vim G++



Creative Software Programming

Lab2:  g++, make, gdb

Yoonsang Lee

Fall 2019



Today Topic

• How to use Terminal

• How to use Git

• G++

• Make

• GDB



How to use Terminal

• Open Terminal (Shortcut CTRL + ALT + T)

• Retrieve file on current directory

• Current Location

(Shell – home directory) 

$ ls

(Shell – home directory) 

$ pwd
/home/<user>             # this is your Home Directory



How to use Terminal

• Directory type

– Normal directory : <dir-name>

– Current directory : .

– Parent directory : ..

– Root directory : /

– Home directory : ~

• Path type

– Absolute address : /<dir1>/<dir2> ..

– Relative address: : <dir1>/<dir2>



How to use Terminal

• Make directory

• Chang the shell working directory

• Remove 

(Shell) 

$ mkdir <dir-name>

(Shell) 

$ rm -rf <dir-name>

(Shell) 

$ rm <file-name>

(Shell) 

$ cd <destination directory>



How to use Terminal

• Move source(s) to destination directory.

• Rename SOURCE to DEST

(Shell) 

$ mv <source file> <destination directory>

(Shell) 

$ mv <source directory> <destination directory>

(Shell) 

$ mv <SOURCE> <DEST>



How to use Terminal

• Copy

(Shell) 

$ cp <source file> <destination directory>

(Shell) 

$ cp <source file> <destination file>

(Shell) 

$ cp –r <source directory> <destination directory>



Git workflow overview

Working
directory

Staging
Area

Local 
Repository

Remote
Repository

$git add <file>

$git reset HEAD -- <file>

$git commit

$git push



Git : staging

• Currently no modified files have been staged.

• $ git add * means stage all currently modified files.



Git : unstaging



Git : commit

• When you commit, write briefly what you commit

• All the commits can be found in the log.



Git : push



What is G++ ?

• Open-sourced C++ compiler

• Most formats and options are the same as the default C 

compiler (cc)

– g++ [options] <infile> ...

• -c : compile and assemble, but do not link Create only object file (.o) without 

creating executable

• -g : debug info. Contains information necessary for debugging (source code, etc.)

• -o <outfile> : Place the output into <outfile>

• -I<dir> : include directory. (directory name to look for headers when compiling)

• -L<dir> : library directory. (Directory name to look for library files when linking)

• -D<symbol>[=def] : define a macro to use at compile time

• ... : There are numerous other options.



Example : Compile & Link

• Write main.cc, print.cc

(Shell – working directory) 

$ vi main.cc

(Shell – working directory) 

$ vi main.cc print.cc

int main() { 

print_hello(); 

return 0;

}

#include <iostream>

void print_hello() { 

std::cout << “hello world!” << 

endl; 

}



Example : Compile & Link

• Compile and link the two source files (main.cc, 

print.cc)

• Run the created executable

(Shell – working directory)

$ g++ -o hello_world main.cc print.cc

(Shell – working directory)

$ g++ -c -o main.o main.cc
$ g++ -c -o print.o print.cc
$ g++ -o hello_world main.o print.o

(Shell – working )

$ ./hello_world



Make

• Build tools that have been around for a long time 

on Unix operating systems

– Rules for how to compile and link the source to create an 

executable



Makefile

• When “make” is run, find Makefile (or makefile) in that 
directory and runs it as usual

• How to write Makefile

– target : File or state to create( such as.o or excutable) 등)

– prerequisites : List of files needed to create target

– command(s) :Each step command to create a target. <Tab> must be placed 
before the command.

target: prerequisites
<TAB>command1
<TAB>command2



Example: Writing / Running makefile

• Write makefile

hello_world: main.o print.o
g++ -o hello_world main.o print.o

main.o: main.cc
g++ -c main.cc

print.o: print.cc
g++ -c print.cc

clean:
rm hello main.o print.o

(Shell – working directory)

$ vi Makefile



Example: Writing / Running makefile

• Execute makefile (1) : generate executable file

• Execute makefile (2) : Remove Excutable file and 

All object files

(Shell – working directory)

$ make

(Shell – working directory)

$ make clean



GDB

Debugging tools - help you find the wrong parts of your program by 
checking its status when the program is running or when it crashes. 

When you build a program, you need to give it the -g option to see the 
information you need. 

gdb [options] <command>

• <command> : If the current directory is not in your PATH, you must include ./.

• Basic command

– r [arguments] :  Run the given command.

– bt : backtrack. Show current call stack status.

– up/down [steps] : Move up / down a given step from the current position of the call stack.

– p <variable> : Display the value of a given variable.

– q : exit gdb process.

– Use more easy-to-use improved programs such as cgdb and ddd



Example

void IncorrectAccess(int* array, int i, int n) {
if (i < n) {
array[i] = 0;
IncorrectAccess(array, i + 1, n);

}
}
int main() { 

int array[10];
IncorrectAccess(array, 0, 20);
return 0;

}

(Shell – working directory)

$ vi test.cc

(Shell – working directory)

$ g++ -o test test.cc
$ gdb ./test
…
(gdb)
…


