
Creative Software Programming

13– Exception Handling

Yoonsang Lee

Fall 2019

Final Exam

• Time: 19:00~21:00, December 16 (Mon)

• Place: IT.BT 508

– http://cs.hanyang.ac.kr/board/info_board.php?ptype=view&idx=28704

• Scope

– Lecture 8, 9, 10, 11, 12, 13

– Assignments of this scope might be used as exam problems

• You cannot leave until 30 minutes after the start of the exam even if you
finish the exam earlier.

• That means, you cannot enter the room after 30 minutes from the start
of the exam (do not be late, never too late!).

• The use of smart devices, including smartphones and smart watches, is
not permitted during the exam. Turn them off and make the screen
invisible.

http://cs.hanyang.ac.kr/board/info_board.php?ptype=view&idx=28704

Today's Topics

• What are Exceptions & How to deal with Exceptions?

• C++ Exceptions: Basics

• try, catch, and throw

• Matching Catch Handlers

• Uncaught Exceptions

• Cleaning Up

• Unwinding the stack

Exceptions

• Exceptions are anomalous or exceptional situations

requiring special processing – often changing the normal

flow of program execution[wikipedia]

– Memory allocation error

• out of memory space

– Divide by zero

•

– File IO error

• Try to open an unavailable file

double x = 2.;

double y = -2.;

double harmonic_mean = 2.0*(x*y)/(x+y);

How to Deal with Exceptions?

• Ignore them

– Wrong thing to do for all but demo programs

• Abort processing

– Detect but don’t try to recover

–

– A little bit better, but still wrong for all but demo programs

double harmonic_mean(double a, double b){

if (a == -b)

{

std::cout << “wrong arguments\n";

std::abort();

}

return 2.0 * a * b / (a + b);

}

$./harmonic_mean

wrong arguments

Aborted (core dumped)

How to Deal with Exceptions?

• Returning error values

– Difficult to read, modify, maintain and debug

• Easy to miss a check

– Impacts performance

• Constantly spending CPU cycles looking for rare events

– Traditional approach

• e.g. malloc(), fopen() of C

bool harmonic_mean(double a, double b,

double * ans){

if (a == -b){

*ans = DBL_MAX;

return false;

}

else{

*ans = 2.0 * a * b / (a + b);

return true;

}

}

ret = PerformTask()
If ret is 0 (or some error codes)

Perform error processing

ret2 = PerformTask2()
If ret2 is 0 (or some error codes)

Perform error processing

How to Deal with Exceptions?

• Use C++ Exceptions

–

– More maintainable

– (Usually) More efficient: zero-cost model (popular strategy for major
compilers):

• if no exceptions are thrown, there’s NO overhead.

• if exceptions are thrown, there’s more overhead to process them.

– Modern approach

• e.g. new, ifstream::open() of C++

try {

// protected code

} catch(ExceptionName e1) {

// catch block

}

C++ Exceptions: Basic

#include <iostream>

using namespace std;

double division(int a, int b) {

if(b == 0) {

throw "Division by zero condition!";

}

return (a/b);

}

int main () {

int x, y;

double z;

cin >> x >> y;

try {

z = division(x, y);

cout << z << endl;

}

catch (const char* msg) {

cerr << msg << endl;

}

return 0;

}

C++ Exceptions: Basic

#include <iostream>

using namespace std;

double division(int a, int b) {

if(b == 0) {

throw "Division by zero condition!";

}

return (a/b);

}

int main () {

int x, y;

double z;

cin >> x >> y;

try {

z = division(x, y);

cout << z << endl;

}

catch (const char* msg) {

cerr << msg << endl;

}

return 0;

}

• For a normal case (e.g. y

!= 0),

1. All code in the try block

is executed.

2. Catch block is skipped.

3. Computation resumes

after the catch block.

C++ Exceptions: Basic

#include <iostream>

using namespace std;

double division(int a, int b) {

if(b == 0) {

throw "Division by zero condition!";

}

return (a/b);

}

int main () {

int x, y;

double z;

cin >> x >> y;

try {

z = division(x, y);

cout << z << endl;

}

catch (const char* msg) {

cerr << msg << endl;

}

return 0;

}

• For an exceptional case

(e.g. y==0),

1. "Throw" an exception.

2. Remaining code in the try

block is skipped.

3. Based on the type of the

exception, the matching

catch block is executed, if

found.

4. Computation resumes

after the last catch block.

C++ Exceptions: Basic

void someFunc1(){

…

throw SomeException(); // when an exception occurs

…

}

void someFunc2() {

try {

// some code that may throw an exception

someFunc1();

}

catch(SomeException &e) {

// some processing to attempt to recover from error

}

}

try, catch, and throw

#include <iostream>

using namespace std;

double division(int a, int b) {

if(b == 0) {

throw "Division by zero condition!";

}

return (a/b);

}

int main () {

int x, y;

double z;

cin >> x >> y;

try {

z = division(x, y);

cout << z << endl;

}

catch (const char* msg) {

cerr << msg << endl;

}

return 0;

}

• try {…}:

– Consists of codes that may

“throw” exceptions

– Groups one or more

statements that may throw

with one or more catch

blocks

try, catch, and throw

#include <iostream>

using namespace std;

double division(int a, int b) {

if(b == 0) {

throw "Division by zero condition!";

}

return (a/b);

}

int main () {

int x, y;

double z;

cin >> x >> y;

try {

z = division(x, y);

cout << z << endl;

}

catch (const char* msg) {

cerr << msg << endl;

}

return 0;

}

• catch(E e) {…}:

– Catchs the exception of

the given type, thrown

from a throw statement

inside try block

– Exception type can be any

built-in type or user-

defined class

– Exceptions are handled

inside the catch block

try, catch, and throw

#include <iostream>

using namespace std;

double division(int a, int b) {

if(b == 0) {

throw "Division by zero condition!";

}

return (a/b);

}

int main () {

int x, y;

double z;

cin >> x >> y;

try {

z = division(x, y);

cout << z << endl;

}

catch (const char* msg) {

cerr << msg << endl;

}

return 0;

}

• throw e:

– “Throw” an exception

– Exception type can be any

built-in type or user-

defined class

– Program immediately

jumps to the matching

catch block

Matching Catch Handlers

• A catch handler matches an exception based on its type.

• A try block can be followed by multiple catch blocks.

– Matching attempts are performed in the order of catch handler decla

ration.

try {
// some code that may throw an exception

}
catch(T1 t1) {

// processing for type T1
}
catch(T2 t2) {

// processing for type T2
}

#include <iostream>

#include <string>

using namespace std;

double division(int a, int b) {

if(b == 0) {

throw -1; // "catch int"

//throw "exception"; // "catch const char*"

//throw string("exception"); // "catch string&"

}

return (a/b);

}

int main () {

int x=2, y=0;

double z;

try {

z = division(x, y);

cout << z << endl;

}

catch (int e) {

cout << "catch int " << e << endl;

}

catch (const char* e) {

cout << "catch const char* " << e << endl;

}

catch (string& e) {

cout << "catch string& " << e << endl;

}

return 0;

}

Matching Catch Handlers

• The conventional way to throw and catch exceptions is:

– throw an exception object

– catch it by reference (or const reference)

• A derived class object can be caught by base class referen

ce.

– But the opposite does not work.

– Caution: If a derived class object is passed by value of base class ty

pe, object slicing occurs.

Matching Catch Handlers

• std::exception : Base class for standard exceptions.

– All exceptions thrown by C++ standard library are derived from this

class.

– Therefore, all standard exceptions can be caught by catching this ty

pe by reference.

#include <iostream>

using namespace std;

class ExceptionA: public std::exception { };

class ExceptionB: public ExceptionA { };

double division(int a, int b) {

if(b == 0) {

throw ExceptionA(); // "catch ExceptionA&"

//throw ExceptionB(); // "catch ExceptionA&"

//throw std::exception(); // "catch std::exception&"

}

return (a/b);

}

int main () {

int x=2, y=0;

double z;

try {

z = division(x, y);

cout << z << endl;

}

catch (ExceptionA& e) {

cout << "catch ExceptionA&" << endl;

}

catch (std::exception& e) {

cout << "catch std::exception&" << endl;

}

return 0;

}

Quiz #1

• Go to https://www.slido.com/

• Join #csp-hyu

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the above

format to be checked as "attendance".

https://www.slido.com/

class ExceptionA: public std::exception {

…

};

class ExceptionB : public ExceptionA {

…

};

int main() {

try {

// This may throw

// ...

} catch (ExceptionB& e) {

// ...

} catch (ExceptionA& e) {

// ...

} catch (std::exception& e) {

// ...

}

return 0;

}

To catch each exception types in a hierarchy:

• Most-derived type should be caught first

• Most-base type should be caught last

Nested Try Blocks

• Try blocks can be nested.

• If a throw occurs in an inner try block, the exception moves

outward through the nested try blocks until the first

matching catch block is found.

– If one of the inner catch blocks catches the exception, it will not get

caught by the outer catch blocks.

– If the inner catch blocks do not catch the exception, it will try to

find a matching one in the outer catch blocks.

#include <iostream>

using namespace std;

class ExceptionA: public std::exception { };

class ExceptionB: public ExceptionA { };

double division(int a, int b) {

if(b == 0) {

throw ExceptionA(); // "catch std::exception&"

//throw ExceptionB(); // "catch ExceptionB&"

}

return (a/b);

}

int main () {

int x=2, y=0;

double z;

try {

try{

z = division(x, y);

}

catch (ExceptionB& e) {

cout << "catch ExceptionB&" << endl;

}

cout << z << endl;

}

catch (std::exception& e) {

cout << "catch std::exception&" << endl;

}

return 0;

}

Re-throw Exceptions

• If your catch handler does not completely handle an

exception,

• you may re-throw it to the next outer catch blocks.

catch(E e)

{

// if the processing to handle e is incomplete,

throw;

}

#include <iostream>

using namespace std;

class ExceptionA: public std::exception { };

class ExceptionB: public ExceptionA { };

double division(int a, int b) {

if(b == 0) {

throw ExceptionB(); // "catch ExceptionB&", "catch

std::exception&"

}

return (a/b);

}

int main () {

int x=2, y=0;

double z;

try {

try{

z = division(x, y);

}

catch (ExceptionB& e) {

cout << "catch ExceptionB&" << endl;

throw;

}

cout << z << endl;

}

catch (std::exception& e) {

cout << "catch std::exception&" << endl;

}

return 0;

}

Uncaught Exceptions

• If there is no matching catch handler in all of the nested

try block,

– Exception is uncaught

– If an exception is uncaught, the special function terminate() is

called

• Use "catch(…)", an ellipsis handler, to avoid uncaught

exceptions.

– It catches any exception not caught earlier.

$./test

terminate called after throwing an instance of 'std::exception'

what(): std::exception

Aborted (core dumped)

Uncaught Exceptions: Example

• If none of the catch handlers matches,

– Exception moves to the next enclosing try block

void ThrowsException() {

throw string("Exception!");

}

void CallsOne() {

ThrowsException();

}

void CallsTwo() {

try {

CallsOne();

} catch (const char* e) {

cout << "Caught in CallsTwo\n";

}

}

int main() {

try {

CallsTwo();

}

catch (string e) {

cout << "Caught an exception in

main\n";

}

return 0;

}

Output:

Caught an exception in main

Uncaught Exceptions: Example

• If an exception is uncaught,

– The special function terminate() is called

void ThrowsException() {

throw string("Exception!");

}

void CallsOne() {

ThrowsException();

}

void CallsTwo() {

try {

CallsOne();

} catch (const char* e) {

cout << "Caught in CallsTwo\n";

}

}

int main() {

try {

CallsTwo();

}

catch (const char* e) {

cout << "Caught an exception in

main\n";

}

return 0;

}

Output:

terminate called after throwing an instance

of 'std::string'

Cleaning Up

• As an exception leaves a scope, destructors of all the

objects in that scope will be called.

• Make all allocations within objects deallocate in their

destructors.

Cleaning Up: Example

class CleaningUp{

private:

string word;

public:

CleaningUp (const string & str) {

word = str;

cout<< "Created word:" << word <<endl;

}

~CleaningUp() {

cout<< "Destroyed word:" << word <<endl;

}

};

void ThrowsException() {

CleaningUp hi("HI");

int* pi = new int;

throw "Exception";

delete pi; // memory leak

CleaningUp bye("BYE");

}

int main() {

try {

ThrowsException();

}

catch (const char* e) {

cout << "Caught an exception"<<

endl;

}

return 0;

} Output:

Created word:HI

Destroyed word:HI

Caught an exception

Unwinding the stack

• return vs. throw

Unwinding the stack

• Exceptions can be propagated through several levels of

function calls if there is no try-catch block

void ThrowsException() {

throw string("Exception!");

}

void DoSomething() {

cout << "DoSomething called.\n";

ThrowsException();

cout << “DoSomething finished\n”;

}

void DoSomethingMore() {

cout << "DoSomethingMorecalled.\n";

DoSomething();

cout << “error in DoSomethingMore\n";

throw string(“error");

cout << "DoSomethingMorefinished.\n";

}

int main() {

try {

DoSomethingMore();

} catch (string s) {

cout << "Caught an exception “ << s << "'" <<

endl;

}

cout << "All done." << endl;

return 0;

}

Output:

DoSomethingMore called.

DoSomething called.

Caught an exception 'Exception!'

All done.

Course Wrap-up

Topics we covered...

• 1-CourseIntro

– 1-Lab1-EnvSetting,Git,Vim, 1-Lab2-g++,make,gdb

• 2-Review of C Pointer and Structure

• 3-Review of C Pointer and Const, Difference Between C and C++

• 4-Dynamic Memory Allocation, References

• 5-Compilation and Linkage, CMD Args

• 6-Class

• 7-Standard Template Library

• 8-Inheritance, Const & Class

• 9-Polymorphism1

• 10-Polymorphism2

• 11-Copy Constructor, Operator Overloading

• 12-Template

• 13-ExceptionHandling

Ending the class...

• We covered a large amount of complex C ++ content.

• I give you applause for all the hard work and lots of content.

• Perhaps the programming language you will encounter later will

be easier to learn.

• Now I want you to work on larger projects that use different

libraries in more diverse environments with your own topic.

• I hope you will continue to enjoy programming.

Announcement

• You HAVE labs in this week:

– Lab1: Assignment 13-1

– Lab2: Assignment 13-2

• No lecture and no labs in next week!

• I hope you will study hard and take good scores for the final

exam (December 16 (Mon))!

Thanks for
being a

great class!

