Computer Graphics

10 - Animation

Yoonsang Lee
Spring 2019

Topics Covered

- Introduction to Computer Animation
- Interpolation
- Linear Interpolation for Rotation
- Kinematics
- Forward Kinematics
- BVH File Format (Motion capture data)

Introduction to Computer Animation

Traditional Hand-drawn Cel Animation

- Senior artist draws keyframes
- Assistant draws inbetweens
- Tedious / labor intensive (opportunity for technology!)

Animation by Milt Kahl (Walt Disney Studios)

Animation by Mark Henn (Walt Disney Studios)

Animation by Marc Davis (Walt Disney Studios)

Computer Animation

- Computers are now widely replacing laborintensive animation processes.
- More controllable than drawing images by hands or constructing miniatures.

Computer Animation: State-of-the-art

- Fluid \longrightarrow Face

https://vml.kaist.ac.kr/main/international/individual/133

Creating Computer Animation

- Keyframe Animation
- Motion Capture
- Physically-Based Simulation
- (mainly focusing on character animation)

Keyframe Animation

- Basic idea:
- specify important events only
- computer fills in the rest via interpolation/approximation
- "Events" don't have to be position
- Could be color, light intensity, camera zoom, ...

Keyframe Animation

- For example, for positions and orientations:
- Affine transformations place things at keyframes.
- Time-varying affine transformations move things around by interpolation at in-between frames.
- How to interpolate affine transformations?
- We'll address this issue later in the lecture today.

Keyframe Animation

- One of the earliest methods used to produce computer animation.
- Difficult to create "realistic" and "physically plausible" motions.
- The quality of the output largely depends on the skill of each artist.
- Still used a lot.

Motion Capture

- Idea: Use "real" human motion to create realistic animation.
- Motion capture system "captures" movement of people or objects.
- Position of each marker on the skin
- Position and orientation of each body part (or joint)

An Example of Optical Passive Motion Capture System

The Last Of Us

The Hobbit

Motion Capture

- Currently, widely used in movies \& games
- by major companies
- Very costly
- Expensive devices
- High operating cost
- Motion captured data is very realistic only in the same virtual environment as capture environment.
- What if a character is affected by unexpected external force?

Capture again?

Physically-Based Simulation

- Idea: Use physics simulation to generate motion
- Because physical reality plays a key role in creating highquality motion.
- Resulting motion would be always physically plausible.
- For active character motion, it's currently being very actively studied by researchers.
- Not easy to find what joint torques are required to make desired output motion.
- Maintaining balance is challenging.
- This problem is similar to that of robotics.

[Lee et al. 2010]

[Lee et al. 2014]

Physically-Based Simulation

- Promising approaches:
- Combining with machine learning techniques (such as deep reinforcement learning)
- Biomechanical simulation of musculoskeletal models
- Control real-world robots
- A notable achievement can have a significant impact not only on computer graphics but also on related areas such as robotics and biomechanics!

Interpolation

Recall: Keyframe Animation

- How to "interpolate" keyframes?

Interpolation

- A method of constructing new data points within the range of a discrete set of known data points.
- In other words, guessing unknown function $f(x)$ from known data points ($\mathrm{x}_{\mathrm{i}}, \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right)$).
Ex) Known data points

x	$f(x)$
0	0
1	0.8415
2	0.9093
3	0.1411
4	-0.7568
5	-0.9589
6	-0.2794

nearest-neighbor interpolation

Linear Interpolation


```
lerp(\mathbf{a},\mathbf{b},t)=(1-t)\mathbf{a}+t\mathbf{b}
float lerp(float v0, float v1, float t)
{
    return (1 - t) * v0 + t * v1;
}
```

- A straight line between two points
- This is fine for translations

Linear Interpolation for 3D Orientations?

- Recall: 3D orientation \& rotation representation
- Euler angles
- Axis-angle (Rotation vector)
- Rotation matrices
- Unit quaternions
- How to linearly interpolate orientations in these representations?

Interpolating Each Element of Rotation Matrix?

- Let's try to interpolate \mathbf{R}_{0} (identity) and \mathbf{R}_{1} (rotation by 90° about x -axis)

$$
\operatorname{lerp}\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right], 0.5\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.5 & -0.5 \\
0 & 0.5 & 0.5
\end{array}\right]
$$

is not a rotation matrix! does not make sense at all!

- Similarly, interpolating each number (w, x, y, z) in ᄃ unit quaternions does not make sense.

Interpolating Axis-Angle (Rotation Vector)?

- Let's say we have two rotation vectors $\mathbf{v}_{1} \& \mathbf{v}_{2}$ of the same length
- Linear interpolation of $\mathbf{v}_{1} \& \mathbf{v}_{2}$ produces even spacing

Interpolating Axis-Angle (Rotation Vector)?

- Let's say we have two rotation vectors $\mathbf{v}_{1} \& \mathbf{v}_{2}$ of the same length
- Linear interpolation of $\mathbf{v}_{1} \& \mathbf{v}_{2}$ produces even spacing
- But it's not evenly spaced in terms of orientation!

Interpolating Euler Angles?

- Interpolating two tuples of Euler angles does not make correct result
-+ angular velocity is not constant
-+ still suffer from gimbal lock: jerky movement occurs near gimbal lock configuration

Slerp

- The right answer: Slerp [Shoemake 1985]
- Spherical linear interpolation
- Linear interpolation of two orientations
$\operatorname{slerp}\left(\mathbf{R}_{1}, \mathbf{R}_{2}, t\right)=\mathbf{R}_{1}\left(\mathbf{R}_{1}^{T} \mathbf{R}_{2}\right)^{t}$

$$
=\mathbf{R}_{1} \exp \left(\mathrm{t} \cdot \log \left(\mathbf{R}_{1}^{T} \mathbf{R}_{2}\right)\right)
$$

Slerp

$\operatorname{slerp}\left(\mathbf{R}_{1}, \mathbf{R}_{2}, t\right)=\mathbf{R}_{1}\left(\mathbf{R}_{1}^{T} \mathbf{R}_{2}\right)^{t}$

$$
=\mathbf{R}_{1} \exp \left(\mathrm{t} \cdot \log \left(\mathbf{R}_{1}^{T} \mathbf{R}_{2}\right)\right)
$$

- $\exp ()$: axis-angle (rotation vector) to rotation matrix
- $\log ()$: rotation matrix to axis-angle (rotation vector)
- Implication
$-\mathbf{R}_{1}{ }^{\mathrm{T}} \mathbf{R}_{2}$: difference between orientation \mathbf{R}_{1} and $\mathbf{R}_{2}\left(\mathbf{R}_{2}(-) \mathbf{R}_{1}\right)$
$-\mathbf{R}^{\mathrm{t}}$: scaling rotation (scaling rotation angle)
$-\mathbf{R}_{\mathrm{a}} \mathbf{R}_{\mathrm{b}}$: add rotation \mathbf{R}_{b} to orientation $\mathbf{R}_{\mathrm{a}}\left(\mathbf{R}_{\mathrm{a}}(+) \mathbf{R}_{\mathrm{b}}\right)$

$\operatorname{Exp} \& \mathbf{L o g}$

- Exp (exponential): axis-angle(rotation vector) to rotation matrix
- Given normalized rotation axis $u=\left(u_{x}, u_{y}, u_{z}\right)$, rotation angle θ

$$
R=\left[\begin{array}{ccc}
\cos \theta+u_{x}^{2}(1-\cos \theta) & u_{x} u_{y}(1-\cos \theta)-u_{z} \sin \theta & u_{x} u_{z}(1-\cos \theta)+u_{y} \sin \theta \\
u_{y} u_{x}(1-\cos \theta)+u_{z} \sin \theta & \cos \theta+u_{y}^{2}(1-\cos \theta) & u_{y} u_{z}(1-\cos \theta)-u_{x} \sin \theta \\
u_{z} u_{x}(1-\cos \theta)-u_{y} \sin \theta & u_{z} u_{y}(1-\cos \theta)+u_{x} \sin \theta & \cos \theta+u_{z}^{2}(1-\cos \theta)
\end{array}\right]
$$

(Rodrigues' rotation formula)

- Log (logarithm): rotation matrix to axis-angle(rotation vector)

Given rotation matrix \mathbf{R}, compute axis \mathbf{v} and angle θ

$$
\begin{aligned}
\theta & =\cos ^{-1}\left(\left(R_{11}+R_{22}+R_{33}-1\right) / 2\right) \\
v_{1} & =\left(R_{32}-R_{23}\right) /(2 \sin \theta) \\
v_{2} & =\left(R_{13}-R_{31}\right) /(2 \sin \theta) \\
v_{3} & =\left(R_{21}-R_{12}\right) /(2 \sin \theta)
\end{aligned}
$$

See section 3.1.3 of INTRODUCTION TO ROBOTICS for more info about matrix exp \& log: http://robotics.snu.ac.kr/fcp/files/ pdf files publications/a first coruse in robot mechanics.pdf

[Practice] Slerp Online Demo

https://nccastaff.bournemouth.ac.uk/jmacey/ WebGL/QuatSlerp/

- Change "Start Rotation" \& "End Rotation"
- Move "Interpolate" slider

Quiz \#1

- Go to https://www.slido.com/
- Join \#cg-hyu
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Kinematics

Kinematics

- Kinematics is
- Study of motion of objects (or groups of objects), without considering mass or forces
- In computer graphics, it's about how to move skeletons
- Forward kinematics
- Inverse kinematics

- By contrast, Dynamics (or Kinetics) is
- Study of the relationship between motion and its causes, specifically, forces and mass

Kinematics

$$
(\mathbf{p}, \mathbf{q})=\mathrm{F}\left(\theta_{i}\right)
$$

Forward Kinematics
: Given joint angles, compute the position \& orientation of end-effector

$$
\theta_{i}=\mathrm{F}^{-1}(\mathbf{p}, \mathbf{q})
$$

Inverse Kinematics

: Given the position \& orientation of end-effector, compute joint angles

[Practice] FK / IK Online Demo

http://robot.glumb.de/

- Forward kinematics : Open "angles" menu and change values
- Inverse kinematics : Move the end-effector position by mouse dragging

Forward Kinematics: A Simple Example

- A simple robot arm in 2-dimensional space
- 2 revolute joints
- Joint angles are known
- Compute the position of the end-effector

$$
\begin{aligned}
& x_{e}=l_{1} \cos \theta_{1}+l_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
& y_{e}=l_{1} \sin \theta_{1}+l_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

A Chain of Transformations

Thinking of Transformations

- In a view of body-attached coordinate system (=local coordinate system of the end-effector body)

$$
\begin{aligned}
T & =\left(\text { rot } \theta_{1}\right)\left(\text { transl }_{1}\right)\left(\text { rot } \theta_{2}\right)\left(\text { transl }_{2}\right) \\
& =\left(\begin{array}{ccc}
\cos \theta_{1} & -\sin \theta_{1} & 0 \\
\sin \theta_{1} & \cos \theta_{1} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & l_{1} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{2} & -\sin \theta_{2} & 0 \\
\sin \theta_{2} & \cos \theta_{2} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & l_{2} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Thinking of Transformations

- In a view of body-attached coordinate system

$T=\left(\operatorname{rot} \theta_{1}\right)\left(t r a n s l_{1}\right)\left(\operatorname{rot} \theta_{2}\right)\left(\right.$ transl $\left._{2}\right)$
$=\left(\begin{array}{ccc}\cos \theta_{1} & -\sin \theta_{1} & 0 \\ \sin \theta_{1} & \cos \theta_{1} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & l_{1} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}\cos \theta_{2} & -\sin \theta_{2} & 0 \\ \sin \theta_{2} & \cos \theta_{2} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & l_{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Thinking of Transformations

- In a view of body-attached coordinate system

$T=\left(\operatorname{rot} \theta_{1}\right)\left(\right.$ transl $\left._{1}\right)\left(\operatorname{rot}_{2}\right)\left(\right.$ transl $\left._{2}\right)$

$=\left(\begin{array}{ccc}\cos \theta_{1} & -\sin \theta_{1} & 0 \\ \sin \theta_{1} & \cos \theta_{1} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & l_{1} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}\cos \theta_{2} & -\sin \theta_{2} & 0 \\ \sin \theta_{2} & \cos \theta_{2} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & l_{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Thinking of Transformations

- In a view of body-attached coordinate system

$T=\left(\operatorname{rot} \theta_{1}\right)\left(\right.$ trans $\left._{1}\right)\left(\operatorname{rot} \theta_{2}\right)\left(t r a n s l_{2}\right)$
$=\left(\begin{array}{ccc}\cos \theta_{1} & -\sin \theta_{1} & 0 \\ \sin \theta_{1} & \cos \theta_{1} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & l_{1} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}\cos \theta_{2} & -\sin \theta_{2} & 0 \\ \sin \theta_{2} & \cos \theta_{2} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & l_{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Thinking of Transformations

- In a view of body-attached coordinate system

$T=\left(\operatorname{rot} \theta_{1}\right)\left(\right.$ trans $\left._{1}\right)\left(\operatorname{rot} \theta_{2}\right)\left(\right.$ trans $\left._{2}\right)$
$=\left(\begin{array}{ccc}\cos \theta_{1} & -\sin \theta_{1} & 0 \\ \sin \theta_{1} & \cos \theta_{1} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & l_{1} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}\cos \theta_{2} & -\sin \theta_{2} & 0 \\ \sin \theta_{2} & \cos \theta_{2} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & l_{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Thinking of Transformations

- In a view of global coordinate system

$T=\left(\operatorname{rot} \theta_{1}\right)\left(\right.$ transl $\left._{1}\right)\left(\operatorname{rot} \theta_{2}\right)\left(\right.$ transl $\left._{2}\right)$
$=\left(\begin{array}{ccc}\cos \theta_{1} & -\sin \theta_{1} & 0 \\ \sin \theta_{1} & \cos \theta_{1} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & l_{1} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}\cos \theta_{2} & -\sin \theta_{2} & 0 \\ \sin \theta_{2} & \cos \theta_{2} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}1 & 0 & l_{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Thinking of Transformations

- In a view of global coordinate system

$T=\left(\operatorname{rot} \theta_{1}\right)\left(\right.$ trans $\left._{1}\right)\left(\operatorname{rot} \theta_{2}\right)\left(\right.$ trans $\left._{2}\right)$
$=\left(\begin{array}{ccc}\cos \theta_{1} & -\sin \theta_{1} & 0 \\ \sin \theta_{1} & \cos \theta_{1} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & l_{1} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}\cos \theta_{2} & -\sin \theta_{2} & 0 \\ \sin \theta_{2} & \cos \theta_{2} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & l_{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Thinking of Transformations

- In a view of global coordinate system

$$
\begin{aligned}
T & =\left(\operatorname{rot}_{1}\right)\left(\text { trans }_{1}\right)\left(\operatorname{rot}_{2}\right)\left(\text { trans } l_{2}\right) \\
& =\left(\begin{array}{ccc}
\cos \theta_{1} & -\sin \theta_{1} & 0 \\
\sin \theta_{1} & \cos \theta_{1} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & l_{1} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{2} & -\sin \theta_{2} & 0 \\
\sin \theta_{2} & \cos \theta_{2} & 0 \\
0 & \ldots & 0 \\
1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & l_{2} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Thinking of Transformations

- In a view of global coordinate system

$T=\left(\operatorname{rot} \theta_{1}\right)\left(t r a n s l_{1}\right)\left(\operatorname{rot} \theta_{2}\right)\left(t \operatorname{transl}_{2}\right)$

Thinking of Transformations

- In a view of global coordinate system

$T=\left(\operatorname{rot} \theta_{1}\right)\left(\right.$ transl $\left._{1}\right)\left(\operatorname{rot} \theta_{2}\right)\left(\right.$ transl $\left._{2}\right)$
$=\left(\begin{array}{ccc}\cos \theta_{1} & -\sin \theta_{1} & 0 \\ \sin \theta_{1} & \cos \theta_{1} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & l_{1} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}\cos \theta_{2} & -\sin \theta_{2} & 0 \\ \sin \theta_{2} & \cos \theta_{2} & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & l_{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$

Quiz \#2

- Go to https://www.slido.com/
- Join \#cg-hyu
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Floating Base

- The position and orientation of the root segment are added

$$
T_{2}=\left(\text { transl }_{\text {root }}\right)\left(\text { rot }_{\text {root }}\right)\left(\text { transl }_{1}\right)\left(\text { rot }_{1}\right)\left(\text { transl }_{2}\right)\left(\text { rot }_{2}\right)
$$

Motion Data

- Contains two types of data:
- Time-varying data
- Joint angles
- "Motion"
- Static data
- Bone lengths (parent-child joint relationship without any motion)
- "Structure"

Joint \& Link Transformations

- Forward kinematics map is an alternating multiple of
- Joint transformations : represents joint movement (time-varying)
- Usually rotations
- Link transformations : defines a frame relative to its parent (static)
- Usually translations (bone-length)

Quiz \#3

- Go to https://www.slido.com/
- Join \#cg-hyu
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

BVH File Format

BVH File Format

- BVH (BioVision Hierarchical data)
- Developed by Biovision, a motion capture company
- Has two parts:
- Hierarchy section
- Describes the hierarchy and initial pose of the skeleton
- Motion section
- Contains motion data
- Text file format

Hierarchy Section

- The hierarchy is a joint tree.
- Each joint has an offset and a channel list.
- Joint 1 :
- Offset: L1
- Channel list : a sequence of transformations of J1 w.r.t. J0

Biovision BVH

CHIIELS 6 Iposition Iposition Iposition Irotation Irotation Iratation

 JuIT Leftilyf
CHIBE 53 Zrotation Irotation Irotation
jOITT Leftyee
\{
OFFST $0.000000 \quad \mathbf{- 1 8 . 4 5 9 9 9} \quad 0.000000$
CIBIELS 3 Zrotation Irotation Frotation
JIDT Leftlakle
\{
OFFEE $\quad 0.000000-17.950001 \quad 0.006000$
CHIBELS 3 Zrotation Irratation Irotation
End Site
$\{$
$\begin{array}{llll}\text { OFFSE } & 0.000000 & -3.119999 & 0.000000\end{array}$
» X, Y and Z offset of the segment from its parent
_ "CHANNELS"
» the number of channels
» the type of each channel

- "JOINT"
- identical to the root definition except for the number of channels
_ "OFFSET","CHANNELS"
- "End Site"
- indicates that the current segment is an end effector (no children)
- "OFFSET"
- 6 channels for the root (Tx Ty Tz Rz Rx Ry)
- 3 channels for every other object ($R z R x R y$)

HIERARCHY

 ROOT Hips\{
OFFSET 0.00 .00 .0
CHANNELS 6 XPOSITION YPOSITION ZPOSITION ZROTATION XROTATION YROTA
JOINT chest
\{

```
OFFSET 0.096536 3.475309 -0.289609
CHANNELS 3 Xrotation Zrotation Yrotation
TOINT neck
{
OFFSET -0.096536 13.901242 -2.027265
CHANNELS 3 Xrotation Zrotation Yrotation
IOINT head
{
OFFSET -0.166775 1.448045 0.482682
CHANNELS }3\mathrm{ Xrotation Zrotation Yrotation
TOINT leftEye
```


HIERARCHY

ROOT Hips

\{
OFFSET 0.00 .00 .0 JO channels
CHANNELS 6 XPOSITION YPOSITION ZPOSITION ZROTATION XROTATION YROTA
JoINT chest
\{

```
OFFSET 0.0196536 3.475309 -0.289669 L1
CHMNNELS 3 Xrotation Zrotation Yrotation J1 channels
IOINT neck
{
OFFSET -0.096536 13.901242 -2.027265 L2
CHANNELS 3 Xrotation Zrotation Yrotation J2 channels
IOINT head
{
OFFSET -0.166775 1.448045 0.482682 L3
CHANNELS 3 Xrotation Zrotation Yrotation
TOINT leftEye
J3 channels
```


HIERARCHY

ROOT Hips Root Hips Joint

\{
OFFSET 0.00 .00 .0 Root offset is generally zero (or ignored even if it's not zero) CHANNELS 6 XPOSITION YPOSITION ZPOSITION ZROTATION XROTATION YROTA JOINT chest Chest Joint
\{

```
OFFSET 0.096536 3.475309 -0.289609
```

CHANNELS 3 Xrotation Zrotation Yrotation
TOINT neck Neck Joint
\{

Neck's offset from chest
OFFSET - 0.166775 . 4480456.482682 CHANNELS 3 Xrotation Zrotation Yrotation TOINT leftEye

Channel list:
Transformation from chest coordinate system to neck coordinate system

Biovision BVH

Frane Tine: 0.033333
$\begin{array}{llll}0.00 & 39.68 & 0.00 & 0.65\end{array}$

■ Motion Section
> "MOTION"

- followed by a line indicating the number of frames
- "Frames:"
- the number of frames
- "Frame Time:"
- the sampling rate of the data
- Ex) $0.033333 \rightarrow 30$ frames a second
- The rest of the file contains the actual motion data
- The numbers appear in the order of the channel specifications as the skeleton hierarchy was parsed
- Each line has motion data for a single frame
- Each number in a line is a value for a single channel
- The unit of rotation channel values is degree

```
HIERARCHY
ROOT Hips
{
OFFSET 0.0 0.0 0.0
    CHANNELS 6 XPOSITION YPOSITION ZPOSITION ZROTATION XROTATION YROTATION
```

 JOINT chest Column 1 Column 2 Column 3 Column 4 Column 5 Column 6
 \{
 OFFSET 0.696536 3.475369-0.2896699
 CHANNELS 3 Xrotation Zrotation Yrotation
 JOINT neck Column 7 Column 8 Column 9
 โ
 OFFSET - \(0.09653613 .901242-2.027265\)
 CHANNELS 3 Xrotation Zrotation Yrotation
 JOINT head Column 10 Column 11 Column 12
 \{
OFFSET - 1.1667751 .4486450 .482682
CHANNELS 3 Xrotation Zrotation Yrotation
Column 13 Column 14 Column 15
MOTION
Frames: 199
Frame Time: 0.033333
$1.957690 .9897694793210 .039193-4.11275998891-0.490682977769-91.35199746950 .45458697547$
$1.957690 .9897694793210 .0392908-4.11760985011-0.48626597981-91.37349890510 .513819016282$
$1.957690 .9897694793210 .039424-4.12004011679-0.488125979059-91.3870021890 .592700017233$
$1.957710 .9897694793210 .0395518-4.0961698863-0.500940000911-91.38409935860 .61126399115$...
$1.957790 .9897594793210 .0396999-4.05799980101-0.510696019006-91.38399690580 .58299101005$
$1.95790 .9897194793210 .0398625-4.0423300664-0.503295989288-91.38420181150 .57718001317$...

Biovision BVH

■ Interpreting the data

$>$ To calculate the position of a segment

- Translation information
- For any joint segment
" the translation information will simply be the offset as defined in the hierarchy section
- For the root object
» The translation data will be the sum of the offset data and the translation data from the motion section
- Rotation information
- comes from the motion section
- If the order is "ZROTATION XROTATION YROTATION"
- Apply transformation in order of rotation about z, rotation about x, rotation about y w.r.t. local frame
- \rightarrow ZXY Euler angles
- Usually ZXY order is used, but other orders can be used

[Practice] BVH Online Demo

```
three.js - BVH Loader - animation from http://mocap.cs.cmu.edu/
```


http://motion.hahasoha.net/

- Select other motions from the list.
- Download corresponding BVH files and open them in a text editor.

Next Time

- Lab in this week:
- Lab assignment 10
- Next lecture:
- 11 - Curve
- Class Assignment \#3
- Due: 23:59, June 10, 2019
- Acknowledgement: Some materials come from the lecture slides of
- Prof. Kayvon Fatahalian and Prof. Keenan Crane, CMU, http://15462.courses.cs.cmu.edu/fall2015/
- Prof. Jinxiang Chai, Texas A\&M Univ., http://faculty.cs.tamu.edu/jchai/csce441 2016spring/lectures.html
- Prof. Jehee Lee, SNU, http://mrl.snu.ac.kr/courses/CourseGraphics/index 2017spring.html
- Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cgi

