
Computer Graphics

13 - Rasterization & Visibility

Yoonsang Lee

Spring 2019

Topics Covered

• Two Approaches for Rendering

– Object-oriented (Rasterization)

– Image-oriented (Raytracing)

• Rasterization (in a narrow sense)

– Line / Polygon Drawing

• Visibility Problem

– Clipping (Viewing frustum culling)

– Back-face culling

– Hidden surface removal

• Rendering(Graphics) Pipeline Again

Recall: Rendering(Graphics) Pipeline

vertex

processing
rasterization

fragment

processing

output merging

: performs a

sequence of vertex

transformations

: assembles

polygons converts

each polygon into a

set of fragments

(pixels)

: determines

color of each

fragment with

light & texture

Two Approaches for Rendering - 1

• Called object-oriented rendering or

rendering(graphics) pipeline or just

rasterization(in a broad sense)

for each object in scene

transform the object to viewport

find pixels for the object

draw these pixels based on texture and lighting model

(triangle rendered to screen)

vertex processing

rasterization (in a narrow sense)

fragment
processing

Two Approaches for Rendering - 2

• Called image-oriented rendering or ray tracing

• We’ll skip ray tracing part, see 14-reference-RayTracing.pdf for
more information about it.

for each pixel in image(film plane)

determine which object should be shown at the pixel

set color of the pixel based on texture and lighting model

(ray intersection rendered to screen)

Rasterization(in a broad sense) & Ray Tracing in

this Course

• Most topics we’ve covered are fundamental concepts

of computer graphics, regardless of two rendering

methods.

– Transformations, mesh, lighting, shading, texture, rotation,

curves, ...

• Except some topics:

– Rendering Pipeline, Viewing, Projection, Viewport,

transformations

– Rasterization & Visibility (today’s topic)

• are specific to rasterization (in a broad sense).

Rasterization(in a narrow sense)

• Rasterization converts vertex representation to pixel
representation (fragments)

• First job: Compute which pixels belong to a primitive

– to enumerate the pixels covered by the primitive

• Second job: Interpolate values across the primitive

– e.g. colors computed at vertices

– e.g. normals at vertices

Rasterization(in a narrow sense)

• A primitive can be a point, line, or polygon

• Line drawing algorithms

– Digital differential analyzer (DDA)

– Bresenham's (a.k.a. Midpoint)

– Xiaolin Wu's

• Polygon drawing algorithms

– Scanline

– Boundary fill

– Flood fill

Rasterization(in a narrow sense)

• But, let’s just skip details of these algorithms.

• Actually, line drawing and polygon drawing are not so easy as
one might think.

– Computational efficiency, anti-aliasing, ...

• But graphics hardware take care of them!

– These algorithms were intensively studied in early days of computer
graphics, so quite mature now.

– Now basic algorithms are implemented in graphics hardware (GPU).

• So nowadays you can think lines and polygons as “primitives”
that are basically rendered.

Visibility Problem

• What is VISIBLE?

Red: viewing frustum, Blue: objects

Visibility Problem

• The answer is:

The camera view

Visibility Problem

• What is NOT VISIBLE?

Visibility Problem

• What is NOT VISIBLE?

• Primitives outside of the

viewing frustum

Visibility Problem

• What is NOT VISIBLE?

• Primitives outside of the

viewing frustum

• Back-facing primitives

Visibility Problem

• What is NOT VISIBLE?

• Primitives outside of the

viewing frustum

• Back-facing primitives

• Primitives occluded by other

objects closer to the camera

Visibility Problem

• These invisible primitives
should be removed because…

• No need to spend time to process
invisible vertices and polygons.

• A close object must hide a farther
one.

• So, removing these primitives is
required for efficient and correct
rendering.

Visibility Problem

• Removing...

• Primitives outside of the viewing frustum

• → Clipping (Viewing frustum culling)

• Back-facing primitives

• → Back-face culling

• Primitives occluded by other objects closer to the camera

• → Hidden surface removal

Clipping (Viewing Frustum Culling)

• Removing primitives outside of

the viewing frustum

• Clipping is much easier with

canonical view volume.

– actually done in clip space

Clipping (Viewing Frustum Culling)

• Line clipping algorithms

– Cohen–Sutherland

– Liang–Barsky

– Cyrus–Beck

• Polygon clipping algorithms

– Sutherland–Hodgman

– Weiler–Atherton

Clipping (Viewing Frustum Culling)

• Polygon clipping algorithms are more complicated.

– Vertices may be added to and deleted from the triangle.

• Again, let’s just skip details of these algorithms.

• Most graphics APIs (including OpenGL) performs
clipping by default.

– You just set the view frustum, then OpenGL will do
clipping for you.

• 13-reference-rasterization,clipping.pdf has brief
slides about DDA & Cohen-Sutherland algorithms. If
you're interested, please refer it.

triangle → quad

Back-Face Culling

• Removing back-facing primitives

• Determined by the dot product of

normal and view (camera)

vectors.

Discard!

Back-Face Culling

• Back-face culling is much more efficient with

canonical view volume

– Because in canonical view volume, we can use a single

view vector, (0,0,1).

view
vector

Back-Face Culling

24

Back-Face Culling in OpenGL

if (cull):

glFrontFace(GL_CCW) # define winding order

glEnable(GL_CULL_FACE) # enable Culling

glCullFace(GL_BACK) # which faces to cull

else:

glDisable(GL_CULL_FACE)

● Can cull front faces or back faces

● Back-face culling can sometimes double
performance

(initially disabled)

(initial value: GL_CCW)

You can also do front-face culling!

Hidden Surface Removal

• Removing primitives occluded by

other objects closer to the camera

• Also known as

– Hidden Surface Elimination

– Hidden Surface Determination

– Visible Surface Determination

– Occlusion Culling

Hidden Surface Removal

• Many algorithms

– Z-buffer (Depth buffer)

– Painter’s algorithm

– BSP tree

– ...

• Z-buffer is the standard method.

• Let’s see the ideas of Painter’s algorithm & Z-

buffer.

Frame Buffer (background knowledge for

understanding HSR algorithms)

• Frame buffer is the portion of memory to hold the

bitmapped image that is sent to the (raster) display device.

• Typically stored on the graphic card’s memory.

– But integrated graphics (e.g. Intel HD Graphics) use the main

memory to store the frame buffer.

• A frame buffer is characterized by its
width, height, and depth.

– E.g. The frame buffer size for 4K UHD
resolution with 32bit color depth = 3840 x
2160 x 32 bits

2

8

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 10

Painter’s algorithm

• Simplest way to do hidden surfaces

• Draw from back to front, use overwriting in

framebuffer

• Requires sorting all polygons by their depth

Weakness of Painter’s Algorithm

• What if there are cycles in the sorted

graph?

– The only solution is dividing these

polygons into small pieces.

• Need to update the sorted graph

whenever camera or object location is

changed.

• → Time-consuming!

3

0

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 10

The z buffer

• In many (most) applications maintaining a z sort is

too expensive

– changes all the time when the view changes

– many data structures exist, but complex

• Solution: draw in any order, keep track of closest

– Z-buffer keeps track of closest depth so far

– when drawing, compare object’s depth to current

closest depth and discard if greater

Z-Buffering: Algorithm
allocate depth_buffer; // Allocate depth buffer  Same size as viewport.

for each pixel (x,y) // For each pixel in viewport.

write_frame_buffer(x,y,backgrnd_color); // Initialize color.

write_depth_buffer(x,y,farPlane_depth); // Initialize depth (z) buffer.

for each polygon // Draw each polygon (in any order).

for each pixel (x,y) in polygon // Rasterize polygon.

color = polygon’s color at (x,y);

pz = polygon’s z-value at (x,y);// Interpolate z-value at (x, y).

if (pz < read_depth_buffer(x,y)) // If new depth is closer:

write_frame_buffer(x,y,color); // Write new (polygon) color.

write_depth_buffer(x,y,pz); // Write new depth.

Frame buffer Z-buffer (Depth buffer)

Z-Buffering : Summary

• Current standard algorithm that is implemented

on all graphics hardwares

• Advantages / Disadvantages:

– Easy to implement

– Fast with hardware support  Fast depth buffer memory

– Polygons can be drawn in any order

– Extra memory required for z-buffer

– not a problem anymore

Rendering(Graphics) Pipeline Again

vertex

processing
rasterization

fragment

processing

output merging

: performs a

sequence of vertex

transformations

: assembles

polygons converts

each polygon into a

set of fragments

(pixels)

: determines

color of each

fragment with

light & texture

Clipping &
Back-face culling

Depth test

, lighting model & condition

Clipping &
Back-face culling

Depth test

, lighting model & condition

• Grey steps are automatically done by
modern graphics system

• Yellow steps (and their inputs) SHOULD
be performed & provided by human

• That’s why we’ve been focusing on
these yellow things in this course!

• You can even write your own software
renderer that covers whole process!

Clipping &
Back-face culling

Depth test

Acknowledgement

• Acknowledgement: Some materials come from the lecture slides of

– Prof. Sung-eui Yoon, KAIST, https://sglab.kaist.ac.kr/~sungeui/CG/

– Prof. JungHyun Han, Korea Univ., http://media.korea.ac.kr/book/

– Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cgi

– Prof. Steve Marschner, Cornell Univ., http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

– Prof. Kayvon Fatahalian and Prof. Keenan Crane, CMU, http://15462.courses.cs.cmu.edu/fall2015/

https://sglab.kaist.ac.kr/~sungeui/CG/
http://media.korea.ac.kr/book/
http://calab.hanyang.ac.kr/cgi-bin/cg.cgi
http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml
http://15462.courses.cs.cmu.edu/fall2015/

Course Wrap-up

Do you remember?

• Computer graphics: The study of creating,

manipulating, and using visual images in the

computer.

Image

Animation
(a series of
images)

Questions about Computer Graphics

• To do this, we should be able to answer:

• How to express movement, placement, shape, and

appearance of objects

• How to map 3D objects into 2D screen

• How the whole rendering process is performed

Movement & placement

3 - Transformation 1

4 - Transformation 2

5 - Affine Geometry, Rendering Pipeline

7 - Hierarchical Modeling, Mesh

9 - Orientation & Rotation

10 - Animation

11 - Curves

Mapping to 2D screen
5 - Affine Geometry, Rendering Pipeline

6 - Viewing, Projection

Shape
7 - Hierarchical Modeling, Mesh

11 - Curves

Appearance
8 - Lighting & Shading

12 - More Lighting, Texture

Rendering Pipeline
5 - Affine Geometry, Rendering Pipeline

13 - Rasterization & Visibility

How do you feel?

• If you’ve had much more fun in this course than

other courses, you already have a great potential

to do interesting research in computer graphics!

• If you think "that's me!" and are interested in doing

some "research", please do not hesitate to mail to

me.

– yoonsanglee@hanyang.ac.kr

mailto:yoonsanglee@hanyang.ac.kr

Thanks for
being a

great class!

(No lab in this week!)

