Computer Graphics

5 - Affine Space, Rendering Pipeline

Yoonsang Lee Spring 2019

Topics Covered

• Affine Space & Coordinate-Free Concepts

- Meanings of an Affine Matrix
- Rendering Pipeline
 - Vertex Processing
 - Modeling transformation

Affine Space & Coordinate-Free Concepts

Coordinate-invariant (Coordinate-free)

• Traditionally, computer graphics packages are implemented using *homogeneous coordinates*.

• We will see *affine space* and *coordinate-invariant geometric programming* concepts and their relationship with the homogeneous coordinates.

• Because of historical reasons, it has been called *"coordinate-free"* geometric programming.

Points

• What is the "sum" of these two "points" ?

If you assume coordinates, ...

$$p = (x_1, y_1)$$

 $q = (x_2, y_2)$

- The sum is (x₁+x₂, y₁+y₂)
 - Is it correct ?
 - Is it geometrically meaningful ?

If you assume coordinates, ...

- Vector sum
 - (x₁, y₁) and (x₂, y₂) are considered as vectors from the origin to p and q, respectively.

If you select a different origin, ...

If you choose a different coordinate frame, you will get a different result

Points and Vectors

- A *point* is a position specified with coordinate values.
- A vector is specified as the difference between two points.
- If an origin is specified, then a point can be represented by a vector from the origin.
- But, a point is still not a vector in *coordinate-free* concepts.

Points & Vectors are Different!

- Mathematically (and physically),
- *Points* are **locations in space**.
- Vectors are displacements in space.

- An analogy with time:
- *Times* (or datetimes) are **locations in time**.
- *Durations* are **displacements in time**.

Vector and Affine Spaces

Vector space

- Includes vectors and related operations
- No points

Affine space

- Superset of vector space
- Includes vectors, points, and related operations

Vector spaces

- A vector space consists of
 - Set of vectors, together with
 - Two operations: addition of vectors and multiplication of vectors by scalar numbers
- A *linear combination* of vectors is also a vector

 $\mathbf{u}_0, \mathbf{u}_1, \cdots, \mathbf{u}_N \in V \implies c_0 \mathbf{u}_0 + c_1 \mathbf{u}_1 + \cdots + c_N \mathbf{u}_N \in V$

Affine Spaces

- An *affine space* consists of
 - Set of points, an associated vector space, and
 - Two operations: the difference between two points and the addition of a vector to a point

Coordinate-Free Geometric Operations

- Addition
- Subtraction
- Scalar multiplication

Addition

u, v, w : vectors p, q : points

Subtraction

Scalar Multiplication

scalar • vector = vector

- 1 point = point
- $0 \cdot point = vector$
- $c \cdot point = (undefined)$ if $(c \neq 0, 1)$

Affine Frame

- A *frame* is defined as a set of vectors {v_i | i=1, ..., N} and a point o
 - Set of vectors {v_i} are bases of the associate vector space
 - o is an origin of the frame
 - -N is the dimension of the affine space
 - Any point **p** can be written as

$$\mathbf{p} = \mathbf{0} + c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_N \mathbf{v}_N$$

- Any vector v can be written as

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_N \mathbf{v}_N$$

Summary

• In an affine space,

point + point = undefined point - point = vector point \pm vector = point vector \pm vector = vector scalar • vector = vector scalar • point = point = vector = undefined

iff scalar = 1 iff scalar = 0 otherwise

Points & Vectors in Homogeneous Coordinates

- In 3D spaces,
- A **point** is represented: (x, y, z, **1**)
- A vector can be represented: (x, y, z, **0**)

 $(x_{1}, y_{1}, z_{1}, 1) + (x_{2}, y_{2}, z_{2}, 1) = (x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}, 2)$ point point undefined $(x_{1}, y_{1}, z_{1}, 1) - (x_{2}, y_{2}, z_{2}, 1) = (x_{1}-x_{2}, y_{1}-y_{2}, z_{1}-z_{2}, 0)$ point point vector $(x_{1}, y_{1}, z_{1}, 1) + (x_{2}, y_{2}, z_{2}, 0) = (x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}, 1)$ point vector point

A Consistent Model

- Behavior of affine frame coordinates is completely consistent with our intuition
 - Subtracting two points yields a vector
 - Adding a vector to a point produces a point
 - If you multiply a vector by a scalar you still get a vector
 - Scaling points gives a nonsense 4th coordinate element in most cases

$$\begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \\ 1 \end{bmatrix} - \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \\ 1 \end{bmatrix} = \begin{bmatrix} a_{1} - b_{1} \\ a_{2} - b_{2} \\ a_{3} - b_{3} \\ 0 \end{bmatrix} \qquad \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \\ 1 \end{bmatrix} + \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \\ 0 \end{bmatrix} = \begin{bmatrix} a_{1} + v_{1} \\ a_{2} + v_{2} \\ a_{3} + v_{3} \\ 1 \end{bmatrix}$$

Points & Vectors in Homogeneous Coordinates

• Multiplying affine transformation matrix to a point and a vector:

$$\begin{bmatrix} M & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{p} \\ 1 \end{bmatrix} = \begin{bmatrix} M\mathbf{p} + \mathbf{t} \\ 1 \end{bmatrix} \begin{bmatrix} M & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} M\mathbf{v} \\ \mathbf{0} \end{bmatrix}$$
point \longrightarrow point vector vector

• Note that translation is not applied to a vector!

Quiz #1

- Go to <u>https://www.slido.com/</u>
- Join #cg-hyu
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Meanings of an Affine Matrix

1) A 4x4 Affine Transformation Matrix transforms a Geometry

Review: Affine Frame

- An **affine frame** in 3D space is defined by three vectors and one point
 - Three vectors for x, y, z axes
 - One point for origin

Global Frame

- A global frame is usually represented by
 - Standard basis vectors for axes : $\hat{\mathbf{e}}_x, \hat{\mathbf{e}}_y, \hat{\mathbf{e}}_z$
 - Origin point : **0**

$$\hat{\mathbf{e}}_{y} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{T}$$

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^{T} = \mathbf{0} \qquad \hat{\mathbf{e}}_{x} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{T}$$

$$\hat{\mathbf{e}}_{z} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{T}$$

Let's transform a "global frame"

- Apply M to this "global frame", that is,
 - Multiply M with the x, y, z axis vectors and the origin *point* of the global frame:

x axis <i>vector</i>									
m	11	m_{12}	m_{13}	u_x	[1]		m_{11}		
m_{i}	21	m_{22}	m_{23}	u_y	0	_	m_{21}		
m_{i}	31	m_{32}	m_{33}	u_z	0	_	m_{31}		
C)	0	0	1	0		0		

z axis *vector*

m_{11}	m_{12}	m_{13}	u_x	$\begin{bmatrix} 0 \end{bmatrix}$	m_{13}
m_{21}	m_{22}	m_{23}	u_y	0	m_{23}
m_{31}	m_{32}	m_{33}	u_{z}	1	m_{33}
0	0	0	1	0	0

y axis *vector*

m_{11}	m_{12}	m_{13}	u_x	0		m_{12}
m_{21}	m_{22}	m_{23}	u_y	1	=	m_{22}
m_{31}	m_{32}	m_{33}	u_{z}	0		m_{32}
0	0	0	1	0		0

origin *point*

2) A 4x4 Affine Transformation Matrix defines an Affine Frame w.r.t. Global Frame

Examples

Quiz #2

- Go to <u>https://www.slido.com/</u>
- Join #cg-hyu
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

3) A 4x4 Affine Transformation Matrix transforms a Point Represented in an Affine Frame to a Point Represented in Global Frame

3) A 4x4 Affine Transformation Matrix transforms a Point Represented in an Affine Frame to a Point Represented in Global Frame Because...

Quiz #3

- Go to <u>https://www.slido.com/</u>
- Join #cg-hyu
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

All these concepts works if the original frame is not global frame!

Think it as: Standing at a frame and observing the object

Left & Right Multiplication

- $p' = \mathbf{R}Tp$ (left-multiplication by \mathbf{R})
 - Apply transformation **R** to point Tp w.r.t. global coordinates
 - Standing at global frame and applying R then T to point p
- $p' = T\mathbf{R}p$ (right-multiplication by \mathbf{R})
 - Apply transformation **R** to point Tp w.r.t. local coordinates
 - Standing at frame T and applying R to point p

• A conceptual model that describes what steps a graphics system needs to perform to render a 3D scene to a 2D image.

• Also known as graphics pipeline.

Vertex Processing

Set vertex positions

Transformed vertices

?

Let's think a "camera"

is watching the "scene".

2D viewport

Vertex positions in

glVertex3fv(p_1) glVertex3fv(p_2) glVertex3fv(p_3)

glMultMatrixf(M^T)

glVertex3fv(p_1) glVertex3fv(p_2) glVertex3fv(p_3)

...or

glVertex3fv(Mp₁)

glVertex3fv(**Mp**₂) glVertex3fv(**Mp**₃) Then what we have to do are...

- 2. Placing the "camera"
- 3. Selecting a "lens"
- 4. Displaying on a "cinema screen"

In Terms of CG Transformation,

- 1. Placing objects
- \rightarrow Modeling transformation
- 2. Placing the "camera"
- \rightarrow Viewing transformation
- 3. Selecting a "lens"
- \rightarrow Projection transformation
- 4. Displaying on a "cinema screen"
- \rightarrow Viewport transformation
- All these transformations just work by **matrix multiplications**!

Translate, scale, rotate, ... any affine transformations (What we've already covered in prev. lectures)

Modeling transformation

World space

Modeling Transformation

3) Review: A 4x4 Affine Transformation Matrix transforms a Point Represented in One Frame to a Point Represented in Global Frame

Modeling Transformation

- Geometry would originally have been in the **object's local coordinates**;
- Transform into world coordinates is called the *modeling* matrix, M_m
- Composite affine transformations
- (What we've covered so far!)

World space

Wheel object space

Next Time

- Lab in this week:
 - Lab assignment 5

- Next lecture:
 - 6 Viewing, Projection

- Acknowledgement: Some materials come from the lecture slides of
 - Prof. Jinxiang Chai, Texas A&M Univ., <u>http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html</u>
 - Prof. Jehee Lee, SNU, <u>http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.html</u>
 - Prof. Sung-eui Yoon, KAIST, https://sglab.kaist.ac.kr/~sungeui/CG/