Computer Graphics

5 - Affine Space, Rendering Pipeline

Yoonsang Lee
Spring 2019

Topics Covered

- Affine Space \& Coordinate-Free Concepts
- Meanings of an Affine Matrix
- Rendering Pipeline
- Vertex Processing
- Modeling transformation

Affine Space \& CoordinateFree Concepts

Coordinate-invariant (Coordinate-free)

- Traditionally, computer graphics packages are implemented using homogeneous coordinates.
- We will see affine space and coordinate-invariant geometric programming concepts and their relationship with the homogeneous coordinates.
- Because of historical reasons, it has been called "coordinate-free" geometric programming.

Points

- What is the "sum" of these two "points" ?

If you assume coordinates, ...

$\mathrm{p}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$

- The sum is $\left(\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{y}_{1}+\mathrm{y}_{2}\right)$
- Is it correct?
- Is it geometrically meaningful ?

If you assume coordinates, ...

$$
\mathbf{p}=\left(x_{1}, y_{1}\right)
$$

- Vector sum
- $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ are considered as vectors from the origin to \mathbf{p} and \mathbf{q}, respectively.

If you select a different origin, ...

$$
\mathbf{p}=\left(x_{1}, y_{1}\right)
$$

- If you choose a different coordinate frame, you will get a different result

Points and Vectors

- A point is a position specified with coordinate values.
- A vector is specified as the difference between two points.
- If an origin is specified, then a point can be represented by a vector from the origin.
- But, a point is still not a vector in coordinate-free concepts.

Points \& Vectors are Different!

- Mathematically (and physically),
- Points are locations in space.
- Vectors are displacements in space.
- An analogy with time:
- Times (or datetimes) are locations in time.
- Durations are displacements in time.

Vector and Affine Spaces

- Vector space
- Includes vectors and related operations
- No points
- Affine space
- Superset of vector space
- Includes vectors, points, and related operations

Vector spaces

- A vector space consists of
- Set of vectors, together with
- Two operations: addition of vectors and multiplication of vectors by scalar numbers
- A linear combination of vectors is also a vector

$$
\mathbf{u}_{0}, \mathbf{u}_{1}, \cdots, \mathbf{u}_{N} \in V \Rightarrow c_{0} \mathbf{u}_{0}+c_{1} \mathbf{u}_{1}+\cdots+c_{N} \mathbf{u}_{N} \in V
$$

Affine Spaces

- An affine space consists of
- Set of points, an associated vector space, and
- Two operations: the difference between two points and the addition of a vector to a point

Coordinate-Free Geometric Operations

- Addition
- Subtraction
- Scalar multiplication

Addition

$\mathbf{u}+\mathbf{v}$ is a vector
$\mathbf{p}+\mathbf{w}$ is a point
$\mathbf{u}, \mathbf{v}, \mathbf{w}:$ vectors
$\mathbf{p}, \mathbf{q}:$ points

Subtraction

$\mathbf{u}-\mathbf{v}$ is a vector

q
$\mathbf{p}-\mathbf{q}$ is a vector
$\mathbf{p}-\mathbf{w}$ is a point

$$
\begin{aligned}
& \mathbf{u}, \mathbf{v}, \mathbf{w}: \text { vectors } \\
& \mathbf{p}, \mathbf{q}: \text { points }
\end{aligned}
$$

Scalar Multiplication

scalar \cdot vector $=$ vector
$1 \cdot$ point = point
$0 \cdot$ point $=$ vector
$c \cdot$ point $=($ undefined $) \quad$ if $(c \neq 0,1)$

Affine Frame

- A frame is defined as a set of vectors $\left\{\mathbf{v}_{i} \mid i=1, \ldots, N\right\}$ and a point 0
- Set of vectors $\{\mathbf{v}\}$ are bases of the associate vector space
- \mathbf{o} is an origin of the frame
- N is the dimension of the affine space
- Any point \mathbf{p} can be written as

$$
\mathbf{p}=\mathbf{o}+c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{N} \mathbf{v}_{N}
$$

- Any vector \mathbf{v} can be written as

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{N} \mathbf{v}_{N}
$$

Summary

- In an affine space,
point + point $=$ undefined
point - point $=$ vector
point \pm vector $=$ point
vector \pm vector $=$ vector
scalar \cdot vector $=$ vector
scalar \cdot point $=$ point
= vector
= undefined
iff scalar $=1$
iff scalar $=0$
otherwise

Points \& Vectors in Homogeneous Coordinates

- In 3D spaces,
- A point is represented: $(x, y, z, 1)$
- A vector can be represented: $(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathbf{0})$

$$
\begin{aligned}
& \left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}, 1\right)+\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}, 1\right)=\left(\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{y}_{1}+\mathrm{y}_{2}, \mathrm{z} 1+\mathrm{z} 2,2\right) \\
& \text { point point } \\
& \text { undefined } \\
& \left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}, 1\right)-\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}, 1\right)=\left(\mathrm{x}_{1}-\mathrm{X}_{2}, \mathrm{y}_{1}-\mathrm{y}_{2}, \mathrm{Z}_{1}-\mathrm{Z}_{2}, 0\right) \\
& \text { point point vector } \\
& \left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z} 1,1\right)+\left(\mathrm{x} 2, \mathrm{y}_{2}, \mathrm{z}_{2}, 0\right)=\left(\mathrm{x} 1+\mathrm{X} 2, \mathrm{y}_{1}+\mathrm{y} 2, \mathrm{z} 1+\mathrm{Z} 2,1\right) \\
& \text { point vector point }
\end{aligned}
$$

A Consistent Model

- Behavior of affine frame coordinates is completely consistent with our intuition
- Subtracting two points yields a vector
- Adding a vector to a point produces a point
- If you multiply a vector by a scalar you still get a vector
- Scaling points gives a nonsense $4^{\text {th }}$ coordinate element in most cases

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
1
\end{array}\right]-\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
1
\end{array}\right]=\left[\begin{array}{c}
a_{1}-b_{1} \\
a_{2}-b_{2} \\
a_{3}-b_{3} \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
1
\end{array}\right]+\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
0
\end{array}\right]=\left[\begin{array}{c}
a_{1}+v_{1} \\
a_{2}+v_{2} \\
a_{3}+v_{3} \\
1
\end{array}\right]_{\text {KIIST }}
$$

Points \& Vectors in Homogeneous Coordinates

- Multiplying affine transformation matrix to a point and a vector:
- Note that translation is not applied to a vector!

Quiz \#1

- Go to https://www.slido.com/
- Join \#cg-hyu
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Meanings of an Affine Matrix

1) A $4 x 4$ Affine Transformation Matrix transforms a Geometry

Translate, rotate, scale, ...

Global frame

Transformed geometry

$\left[\begin{array}{cccc}m_{11} & m_{12} & m_{13} & u_{x} \\ m_{21} & m_{22} & m_{23} & u_{y} \\ m_{31} & m_{32} & m_{33} & u_{z} \\ 0 & 0 & 0 & 1\end{array}\right]$

Every vertex position (w.r.t. the global frame) of the cube is transformed to another position (w.r.t. the global frame)

Review: Affine Frame

- An affine frame in 3D space is defined by three vectors and one point
- Three vectors for $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes
- One point for origin

Global Frame

- A global frame is usually represented by
- Standard basis vectors for axes : $\hat{\mathbf{e}}_{x}, \hat{\mathbf{e}}_{y}, \hat{\mathbf{e}}_{z}$
- Origin point: 0

$$
\begin{gathered}
\hat{\mathbf{e}}_{y}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]^{T} \\
{\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]^{T}=\mathbf{0}} \\
\hat{\mathbf{e}}_{z}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{T}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{T}
\end{gathered}
$$

Let's transform a 'global frame"

- Apply M to this "global frame", that is,
- Multiply M with the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis vectors and the origin point of the global frame:
x axis vector
$\left[\begin{array}{cccc}m_{11} & m_{12} & m_{13} & u_{x} \\ m_{21} & m_{22} & m_{23} & u_{y} \\ m_{31} & m_{32} & m_{33} & u_{z} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}m_{11} \\ m_{21} \\ m_{31} \\ 0\end{array}\right]$
z axis vector
$\left[\begin{array}{cccc}m_{11} & m_{12} & m_{13} & u_{x} \\ m_{21} & m_{22} & m_{23} & u_{y} \\ m_{31} & m_{32} & m_{33} & u_{z} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}0 \\ 0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}m_{13} \\ m_{23} \\ m_{33} \\ 0\end{array}\right]$
y axis vector

$$
\left[\begin{array}{cccc}
m_{11} & m_{12} & m_{13} & u_{x} \\
m_{21} & m_{22} & m_{23} & u_{y} \\
m_{31} & m_{32} & m_{33} & u_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
m_{12} \\
m_{22} \\
m_{32} \\
0
\end{array}\right]
$$

origin point

$$
\left[\begin{array}{cccc}
m_{11} & m_{12} & m_{13} & u_{x} \\
m_{21} & m_{22} & m_{23} & u_{y} \\
m_{31} & m_{32} & m_{33} & u_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
u_{x} \\
u_{y} \\
u_{z} \\
1
\end{array}\right]
$$

2) A $4 x 4$ Affine Transformation Matrix defines an Affine Frame w.r.t. Global Frame

Examples

Quiz \#2

- Go to https://www.slido.com/
- Join \#cg-hyu
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

3) A $4 x 4$ Affine Transformation Matrix transforms a Point Represented in an Affine Frame to a Point Represented in Global Frame

4) A 4×4 Affine Transformation Matrix transforms a Point Represented in an Affine Frame to a Point Represented in Global Frame Because...

Let's say we have the same cube object and its local frame coincident with Global frame the global frame

Then, it's a just story of transforming a geometry!

Quiz \#3

- Go to https://www.slido.com/
- Join \#cg-hyu
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

All these concepts works if the original frame is not global frame!

Think it as: Standing at a frame and observing the object

Left \& Right Multiplication

- $\mathrm{p}^{\prime}=\mathbf{R T p}$ (left-multiplication by \mathbf{R})
- Apply transformation \mathbf{R} to point Tp w.r.t. global coordinates
- Standing at global frame and applying R then T to point p
- $\mathrm{p}^{\prime}=\mathbf{T R p}$ (right-multiplication by \mathbf{R})
- Apply transformation \mathbf{R} to point Tp w.r.t. local coordinates
- Standing at frame T and applying R to point p

Rendering Pipeline

Rendering Pipeline

- A conceptual model that describes what steps a graphics system needs to perform to render a 3D scene to a 2D image.
- Also known as graphics pipeline.

Rendering Pipeline

Rendering Pipeline

Vertex Processing

Set vertex
positions

Transformed
vertices

glVertex3fv $\left(p_{1}\right)$
glVertex3fv $\left(p_{2}\right)$
glVertex3fv $\left(p_{3}\right)$
glMultMatrixf(\mathbf{M}^{T})
glVertex3fv $\left(p_{1}\right)$
glVertex3fv $\left(p_{2}\right)$
glVertex3fv $\left(p_{3}\right)$
...or
glVertex3fv(Mp_{1})
glVertex3fv($\mathbf{M p}_{2}$)
glVertex3fv($\mathbf{M p}_{3}$)

Vertex positions in
2D viewport

Then what we have to do are...
2. Placing the "camera"
3. Selecting a "lens"
4. Displaying on a "cinema screen"

In Terms of CG Transformation,

- 1. Placing objects
\rightarrow Modeling transformation
- 2. Placing the "camera"
\rightarrow Viewing transformation
- 3. Selecting a "lens"
\rightarrow Projection transformation
- 4. Displaying on a "cinema screen"
\rightarrow Viewport transformation
- All these transformations just work by matrix multiplications!

Vertex Processing (Transformation Pipeline)

Object space

Translate, scale, rotate, ... any affine transformations (What we've already covered in prev. lectures)

World space

Vertex Processing (Transformation Pipeline)

Object space

Modeling transformation

World space

Vertex Processing (Transformation Pipeline)

Modeling Transformation

3) Review: A 4×4 Affine Transformation Matrix transforms a Point Represented in One Frame to a Point Represented in Global Frame

Modeling Transformation

- Geometry would originally have been in the object's local coordinates;
- Transform into world coordinates is called the modeling matrix, M_{m}
- Composite affine transformations
- (What we've covered so far!)

Translate, rotate, scale, ... (Affine transformation)
$\mathbf{M m}_{\mathrm{m}}$

World space

Wheel object space

local coordinates

Cab object space

Container object space

- Lab in this week:
- Lab assignment 5
- Next lecture:
- 6 - Viewing, Projection
- Acknowledgement: Some materials come from the lecture slides of
- Prof. Jinxiang Chai, Texas A\&M Univ., http://faculty.cs.tamu.edu/jchai/csce441 2016spring/lectures.html
- Prof. Jehee Lee, SNU, http://mrl.snu.ac.kr/courses/CourseGraphics/index 2017spring.html
- Prof. Sung-eui Yoon, KAIST, https://sglab.kaist.ac.kr/~sungeui/CG/

