Computer Graphics

5 - Affine Space, Rendering Pipeline

Yoonsang Lee
Spring 2019

Topics Covered
» Affine Space & Coordinate-Free Concepts
* Meanings of an Affine Matrix

* Rendering Pipeline
— Vertex Processing

* Modeling transformation

Affine Space & Coordinate-
Free Concepts

Coordinate-invariant (Coordinate-free)

 Traditionally, computer graphics packages are
Implemented using homogeneous coordinates.

* We will see affine space and coordinate-invariant
geometric programming concepts and their
relationship with the homogeneous coordinates.

* Because of historical reasons, it has been called
“coordinate-free”” geometric programming.

Points

Point p
% Point g
. /

« What is the “sum” of these two "points" ?

If you assume coordinates, ...
p = (X, y1)

q = (X2, ¥2)

 The sum is (Xit+Xz, y1t+Y2)
— Is it correct ?
— Is it geometrically meaningful ?

If you assume coordinates, ...

p = (X1, y1)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

e \Vector sum

— (X1, y1) and (xz, y2) are considered as vectors from the origin to p
and g, respectively.

If you select a different origin, ...

p = (X1, y1)
(X1t+X2, Y1t+Yy2)

%
VRARN

7 N
/7 N
/7 N
7 N
7/ N
4 N
LY \
& \
N
\ \
AN N
N AN
N \
N \
N N
\ \
N \
\ AN
\ N
AN \
N AN
N
N
\
N

\ A 4= (%, y2)
Origin l

 If you choose a different coordinate frame, you will get a
different result

Points and Vectors

o Point g

vew

Point p ©

A point is a position specified with coordinate values.
A vector is specified as the difference between two points.

If an origin is specified, then a point can be represented by a vector
from the origin.

But, a point is still not a vector in coordinate-free concepts.

Points & Vectors are Different!

Mathematically (and physically),
Points are locations in space.
Vectors are displacements in space.

An analogy with time:
Times (or datetimes) are locations in time.
Durations are displacements in time.

Vector and Affine Spaces

 Vector space
— Includes vectors and related operations
— No points

« Affine space
— Superset of vector space
— Includes vectors, points, and related operations

Vector spaces

 Avector space consists of
— Set of vectors, together with

— Two operations: addition of vectors and multiplication
of vectors by scalar numbers

e Alinear combination of vectors Is also a vector

u,,u,---,uy eV = CyU,+CcuU,+---+CyUy €V

Affine Spaces

* An affine space consists of
— Set of points, an associated vector space, and

— Two operations: the difference between two points
and the addition of a vector to a point

Coordinate-Free Geometric Operations

e Addition
e Subtraction

« Scalar multiplication

Addition

p+w

u-+v Vv W

P

u + Vv IS avector p +w is a point

u, v, w : vectors
P, d : points

Subtraction

P p-w
u/\v pf/ /
\Y
g P

u -V Is avector P - g IS a vector P - W is a point

u, v, w : vectors
P, d : points

Scalar Multiplication

scalar * vector = vector

1 « point = point

O « point = vector

c * point = (undefined) if (c#0,1)

Affine Frame

« Aframe is defined as a set of vectors {vil| i=1, ..., N}
and a point o

— Set of vectors {vi} are bases of the associate vector

space
— 0 Is an origin of the frame
— N is the dimension of the affine space In 3D space
— Any point p can be written as | i
a point
P=0+CV,+C,V, +--+C\V, \'/
— Any vector v can be written as A\?

V=CV,+C,V, +-+-+C\V,

Summary

* In an affine space,

point + point = undefined

point — point = vector

point £ vector = point

vector * vector = vector

scalar « vector = vector

scalar ¢ point = point Iff scalar =1
= vector Iff scalar=0

= undefined otherwise

Points & Vectors in Homogeneous Coordinates

* In 3D spaces,
« A point is represented: (X, Yy, z, 1)
« A vector can be represented: (X, Y, z, 0)

(X1, Y1, 21, 1) + (X2, Y2, Z2, 1) = (X1+X2, Y1tY2, Z1+22, 2)
point point

(X1, Y1, 21, 1) - (X2, Y2, Z2, 1) = (X1-X2, Y1-Y2, Z1-Z2, Q)
point point vector

(X1, Y1, 21, 1) + (X2, Y2, 22, 0) = (Xa+Xz, Y1tYy2, Z1+2Z2, 1)
point vector point

21

A Consistent Model

e Behavior of affine frame coordinates is
completely consistent with our intuition

e Subtracting two points yields a vector
e Adding a vector to a point produces a point

e If you multiply a vector by a scalar you still get
a vector

e Scaling points gives a nonsense 4th coordinate
element in most cases

a, | [b,] [a,—b,] a, | [v,] |a,+v,]
a, b,) a, —b, a, Vo | |3+,
a,| |b,| |a,—b, a, i v, | |a, +v,
1 1 0 1 0 1

— LR L T T kst

Points & Vectors in Homogeneous Coordinates

* Multiplying affine transformation matrix to a point
and a vector:

-] -6

point — point vector — vector

 Note that translation is not applied to a vector!

Quiz #1

* Go to https://www.slido.com/
 Join #cg-hyu
* Click “Polls”

« Submit your answer in the following format:

— Student ID: Your answer
— e.¢. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked for “attendance”.

https://www.slido.com/

Meanings of an Affine Matrix

1) A 4x4 Affine Transformation Matrix
transforms a Geometry

Transformed geometry

/

Translate, rotate, scale, ...

myiyp Mz My3 Uy
— [T21 Mgz 123 Uy

m3yp M32 MM33 U,
0 0 0 1,

/ Global frame Every vertex position (w.r.t. the global fre_xr_ne)
of the cube is transformed to another position

(w.r.t. the global frame)

Review: Affine Frame

« An affine frame in 3D space Is defined by three
vectors and one point
— Three vectors for X, y, z axes
— One point for origin

'} Three
vectors and

Global Frame

« Aglobal frame is usually represented by
— Standard basis vectors for axes : e,, €,, €,
— Origin point:

=0 1 0]"

Let’s transform a "'global frame"

* Apply M to this "global frame", that Is,

— Multiply M with the X, y, z axis vectors and the origin

point of the global frame:

X axis vector

mi3
mao3
Mgy T3z 133

0 0 0

miq
maoq

mio
mao2

Z axis vector
mis
ma3
mg1 T3z 133

0 0 0

miq
Moy

mi2
Moo

Eh
0
0

0]

y axis vector

mis
ma3
m3p 132 7133

mii
maoq

mio
mo2

0 0 0

origin point
i mi3

mog
ma31 M3y 1TN33

miq
ma1

mi2
Mmoo

0 0 0

2) A 4x4 Affine Transformation Matrix
__defines an Affine Frame w.r.t. Global Frame ——

l’y
= l:r
P
Local frame
-mn miz MMy3 Ua:- lz
A — |M21 M2z [23 Uy
€y M msy Mgz M3z U,
0 0 O 1] :Theaxis vectorsand origin
e T 1 point of the object’s local
0 é:c X axis 2 axis frame represented in the
vector vector global frame
A Global frame y axis
5P

vector origin
point

Examples

local
coordinate system
world and local
coordinate system
coincide

/\ £ T origin
= /\ point

This local frame - coordiz:t:dsystem This local frame

|S defIHEd by (a) (b) @ www.scratchapixel.com IS deflned by
1 0 0 0] _m11 My 113 Ul-
1010 0 _|M21 Ma2 Ma3 U
I/'O 0 1 O"\ M= m31 Mgz 1133 U3
0 0 0 1 0 0 0 1

xaxis 7 0N °)

origin of the local frame X s 7 " -

point represented in the global . . yaxis zaxis
frame vector vector

vector Y axis zaxis
vector vector

Quiz #2

* Go to https://www.slido.com/
 Join #cg-hyu
* Click “Polls”

« Submit your answer in the following format:

— Student ID: Your answer
— e.¢. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked for “attendance”.

https://www.slido.com/

3) A 4x4 Affine Transformation Matrix
transforms a Point Represented in an Affine
Frame to a Point Represented in Global
Frame

Local frame
I:)I
(P, is represented in
local frame)

o3 33
o3 33

P,=MP,
(P, Is represented in global frame)

/ Global frame

3) A 4x4 Affine Transformation Matrix
transforms a Point Represented in an Affine
- Frame to a Point Represented in Global
Frame Because...

\ Local frame
o7
l (P, is represented in
M =
local frame)

Lets say we
have the same P, (This the identical P,
cube object Now represented in global frame)
and its local —
frame .)
coincident wit Global frame Then, it’s a just story of
the global transforming a geometry!

frame

Quiz #3

* Go to https://www.slido.com/
 Join #cg-hyu
* Click “Polls”

« Submit your answer in the following format:

— Student ID: Your answer
— e.¢. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked for “attendance”.

https://www.slido.com/

All these concepts works if the original
frame Is not global frame!

M; M, 1

éy

MZ
0 €, /m
Global frame

€.

Frame 1

Think 1t as: Standing at a frame and
observing the object

L,
P,=(1,1,0)
O A
b Q= 1,
Frame 2
M; M, 1

€.

em /\
Global frame

Frame 1

Left & Right Multiplication

 p’=RTp (left-multiplication by R)
— Apply transformation R to point Tp w.r.t. global
coordinates

— Standing at global frame and applying R then T to
point p

* p’=TRp (right-multiplication by R)
— Apply transformation R to point Tp w.r.t. local
coordinates

— Standing at frame T and applying R to point p

Rendering Pipeline

Rendering Pipeline

A conceptual model that describes what steps a
graphics system needs to perform to render a 3D
scene to a 2D Image.

* Also known as graphics pipeline.

Rendering Pipeline

vertex L fragment
: rasterization :
processing processing

. performs a . assembles . determines

sequence of vertex polygons & converts color of each _
transformations each polygon into a fragment with | Output merging
set of fragments light & texture

(pixels)

Rendering Pipeline

4)

[vertex N fragment
: |—| rasterization I—l : If
processing processing

- performs a — What we’ve been done so far 3§
sequence of vertex _
output merging

transformations

- /
— We’ll see today & next lecture

Vertex Processing

Set vertex Transformed \ertex positions in
positions vertices 2D viewport
1. Placing objects f)
M]
EEEEEENERN ’
@; Let’s think a “camera”
is watching the “scene”.

gl\Vertex3fv(p,) glMultMatrixf(MT)
glVertex3fv(p,) glVertex3fv(p,)
glVertex3fv(p.) glVertex3fv(p,)

Then what we have to do are...

glVertex3tv(p) 2. Placing the “camera”

...or 3. Selecting a “lens”
gl\Vertex3fv(Mp,) 4. Displaying on a “cinema screen”
glVertex3fv(Mp,)

glVertex3fv(Mp,)

In Terms of CG Transformation,

« 1. Placing objects
— Modeling transformation

» 2. Placing the “camera”
— Viewing transformation

« 3. Selecting a “lens”
— Projection transformation

» 4. Displaying on a “cinema screen”
— Viewport transformation

« All these transformations just work by matrix multiplications!

Vertex Processing (Transformation Pipeline)

Object space
Y1

; W Local coordinates

»
.)

21 29

Translate, scale, rotate, ... any affine transformations
(What we’ve already covered in prev. lectures)

r
[T

Loy

T~ Global coordinates

World space

>

Vertex Processing (Transformation Pipeline)

Object space
ni Y2

I
> b‘ Tg
21

22

Modeling transformation

>

World space

Vertex Processing (Transformation Pipeline)

View space

Object space (Camera space)
H Y2

A
P » I
1 b‘ To
o f

Placing the “camera”

>

World space

Vertex Processing (Transformation Pipeline)

View space

Object space (Camera space)
H Y2

A
P » I
1 b‘ To
o f

Viewing transformation

>

World space

Vertex Processing (Transformation Pipeline)

View space

Object space (Camera space)
Y2

Y
> b‘ Tg
<1 >

Yo Q 't (1,1,1)

(-1,-1-1) /

Canonical view volume
World space (Normalized device coordinates, NDC)

>

Vertex Processing (Transformation Pipeline)

View space

Object space (Camera space)
H Y2

A
i é‘ g
<1

22

) O Y4 (1,1,)

< > ‘
vy i
T (-1,-1,-1) /

Canonical view volume
World space (Normalized device coordinates, NDC)

Vertex Processing (Transformation Pipeline)

Object space

Y1

A

Y2

21

» L
1 é‘.‘fz

22

World space

View space
(Camera space)

(-1,-1,-1)

Screen space
(Image space)

Displaying on a
“cinema screen’”

Canonical view volume

(Normalized device coordinates, NDC)

Vertex Processing (Transformation Pipeline)

View space Screen space

Object space (Camera space) (Image space)
ni Y2

A

i é‘ g
<1

22

) O Y4 (1,1,)

< > ‘
vy i
T (-1,-1,-1) /

Canonical view volume
World space (Normalized device coordinates, NDC)

Vertex Processing (Transformation Pipeline)

_ View space Screen space
Object space (Camera space) (Image space)
%Jl Y2
! Ui
Modeling Viewing Projection Viewport
transformation transformation transformation transformation

) O Y4 (1,1,)

< > ‘
vy i
T (-1,-1,-1) /

Canonical view volume
World space (Normalized device coordinates, NDC)

Vertex Processing (Transformation Pipeline)

_ View space Screen space
Object space (Camera space) (Image space)
Y2
e ’ Yi
Modeling Viewing Projection Viewport
transformation transformation transformation transformation
AR Va 11
All these transformations just work)
by matrix multiplications! .

P I

o Canonical view volume
World space (Normalized device coordinates, NDC)

Vertex Processing (Transformation Pipeline)

_ View space Screen space
Object space (Camera space) (Image space)
?fl Y2
po ’ Ui
Modeling Viewing Projection Viewport
transformation transformation transformation transformation
o \Y/ : M, : My : M,
YL Y
| (1,1,1)
ps_ I\/va ij I\/Ivl\/lm Oo ;E;z| «
Loy >
(-1,-1,-1) /

2

Canonical view volume
World space (Normalized device coordinates, NDC)

Modeling Transformation

_ View space Screen space
Object space (Camera space) (Image space)
Yo
po Ui
ke el Ta
21 29
Modeling
transformation
M m

(What does this
arrow direction
with M., means?)

Pw=MpnpP, |

»

?‘(1,1,1)
Zl x
%

(-1,-1,-1)

Canonical view volume
World space (Normalized device coordinates, NDC)

3) Review: A 4x4 Affine Transformation
Matrix transforms a Point Represented In

One Frame to a Point Represented In
Global Frame

Local frame

.f'PI
(P, is represented in
local frame)

o3 33
o3 33

P,=MP,
(P, Is represented in global frame)

/ Global frame

Modeling Transformation

« Geometry would originally have been in the object’s local
coordinates;

« Transform into world coordinates is called the modeling
matrix, M,

« Composite affine transformations
* (What we’ve covered so far!)

Object space 0,
u Y Translate, rotate, scale, ... Yw O
P, (Affine transformation) .7

M Loy

m

Z1 29

>

World space

Wheel object space

World space

local coc wheel
Mm

cab
M m

i Tﬁ?!&

global coordinates

M container
m

Next Time

* Lab in this week:
— Lab assignment 5

* Next lecture:
— 6 - Viewing, Projection

* Acknowledgement: Some materials come from the lecture slides of
— Prof. Jinxiang Chai, Texas A&M Univ., http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html
— Prof. Jehee Lee, SNU, http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.html
— Prof. Sung-eui Yoon, KAIST, https://sglab.kaist.ac.kr/~sungeui/CG/

http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html
http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.html
https://sglab.kaist.ac.kr/~sungeui/CG/

