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Topics Covered

• Rendering Pipeline

– Vertex Processing

• Viewing transformation

• Projection Transformation

• Viewport Transformation



Vertex Processing (Transformation Pipeline)
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Viewing Transformation
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Recall that...

• 1. Placing objects

→ Modeling transformation

• 2. Placing the “camera”

→ Viewing transformation

• 3. Selecting a “lens”

→ Projection transformation

• 4. Displaying on a “cinema screen”

→ Viewport transformation



Viewing Transformation

• Placing the camera and expressing all object vertices 
from the camera's point of view

• Transform from world to view space is traditionally called 
the viewing matrix, Mv
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Viewing Transformation

• Placing the camera

• → How to set the camera’s position & 

orientation?

• Expressing all object vertices from the camera's 

point of view

• → How to define the camera’s coordinate 

system (frame)?



1. Setting Camera’s Position & Orientation

• Many ways to do this

• One intuitive way is using:

• Eye point

– Position of the camera

• Look-at point

– The target of the camera

• Up vector

– Roughly defines which direction is up

=Look-at point



2. Defining Camera’s Coordinate System

• Given eye point, look-at point, up vector, we can 

get camera frame (Peye, u, v, w).

– For details, see 6-reference-viewing.pdf
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Viewing Transformation is the Opposite

Direction
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gluLookAt()

gluLookAt (eyex,eyey,eyez,atx,aty,atz,upx, upy,upz)
: creates a viewing matrix and right-multiplies the current 

transformation matrix by it

C ← CMv



[Practice] gluLookAt()
import glfw

from OpenGL.GL import *

from OpenGL.GLU import *

import numpy as np

gCamAng = 0.

gCamHeight = .1

def render():

# enable depth test (we'll see details later)

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glLoadIdentity()

# use orthogonal projection (we'll see details later)

glOrtho(-1,1, -1,1, -1,1)

# rotate "camera" position (right-multiply the current matrix by viewing 

matrix)

# try to change parameters

gluLookAt(.1*np.sin(gCamAng),gCamHeight,.1*np.cos(gCamAng), 0,0,0, 0,1,0)

drawFrame()

glColor3ub(255, 255, 255)

drawTriangle()



def drawFrame():

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([1.,0.,0.]))

glColor3ub(0, 255, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([0.,1.,0.]))

glColor3ub(0, 0, 255)

glVertex3fv(np.array([0.,0.,0]))

glVertex3fv(np.array([0.,0.,1.]))

glEnd()

def drawTriangle():

glBegin(GL_TRIANGLES)

glVertex3fv(np.array([.0,.5,0.]))

glVertex3fv(np.array([.0,.0,0.]))

glVertex3fv(np.array([.5,.0,0.]))

glEnd()

def key_callback(window, key, scancode, action,

mods):

global gCamAng, gCamHeight

if action==glfw.PRESS or action==glfw.REPEAT:

if key==glfw.KEY_1:

gCamAng += np.radians(-10)

elif key==glfw.KEY_3:

gCamAng += np.radians(10)

elif key==glfw.KEY_2:

gCamHeight += .1

elif key==glfw.KEY_W:

gCamHeight += -.1

def main():

if not glfw.init():

return

window =

glfw.create_window(640,640,'gluLookAt()',

None,None)

if not window:

glfw.terminate()

return

glfw.make_context_current(window)

glfw.set_key_callback(window,

key_callback)

while not

glfw.window_should_close(window):

glfw.poll_events()

render()

glfw.swap_buffers(window)

glfw.terminate()

if __name__ == "__main__":

main()



Moving Camera vs. Moving World

• Actually, these are two equivalent operations

• Translate camera by (1, 0, 2) == Translate world by (-1, 0, -2)

• Rotate camera by 60° about y ==Rotate world by -60° about y



Moving Camera vs. Moving World

• Thus you also can use glRotate*() or glTranslate*() 
to manipulate the camera!

• Using gluLookAt() is just one option of many other 
choices to manipulate the camera.

• By default, OpenGL places a 

camera at the origin pointing in 

negative z direction.



Modelview Matrix

• As we’ve just seen, moving camera & moving 

world are equivalent operations.

• That’s why OpenGL combines a viewing matrix Mv 

and a modeling matrix Mm into a modelview matrix 

M=MvMm



Quiz #1

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the 

above format to be checked for “attendance”.

https://www.slido.com/


Projection Transformation

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection 

transformation

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)



Recall that...

• 1. Placing objects

→ Modeling transformation

• 2. Placing the “camera”

→ Viewing transformation (covered in the last class)

• 3. Selecting a “lens”

→ Projection transformation

• 4. Displaying on a “cinema screen”

→ Viewport transformation



Review:Normalized Device Coordinates

• Called normalized device 

coordinates (NDC)

• Also known as canonical 

view volume

• Remember that you could draw the triangle anywhere 

in a 2D square ranging from [-1, -1] to [1, 1].
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Canonical View “Volume”

• Actually, a canonical view volume is a 3D cube 
ranging from [-1,-1,-1] to [1,1,1] in OpenGL

– Its coordinate system is NDC

• Its xy plane is a 2D “viewport”

• Note that NDC in OpenGL is a left-handed 
coordinate system

– Viewing direction in NDC : +z direction

• But OpenGL’s projection functions change the 
hand-ness – Thus view, world, model spaces use 
right-handed coordinate system

– Viewing direction in view space : -z direction



Canonical View Volume

• OpenGL only draws objects inside 

the canonical view volume

– To draw objects only in the camera’s 

view 

– Not to draw objects too near or too far 

from the camera

X



Do we always have to use the cube of size 2

as a view volume?

• No. You can set any size visible volume and draw 
objects inside it.

– Even you can use “frustums” as well as cuboids

• Then everything in the visible volume is mapped 
(projected) into the canonical view volume.

• Then 3D points in the canonical view volume are 
projected onto its xy plane as 2D points.

• → Projection transformation



Projection in General

• General definition:

• Transforming points in n-space to m-space (m<n)



Projection in Computer Graphics

• Mapping 3D coordinates to 2D screen 
coordinates.

• Two stages:

– Map an arbitrary view volume to a canonical view 
volume

– Map 3D points in the canonical view volume onto 
its xy plane : But we still need z values of points 
for depth test, so do not consider this second stage

• Two common projection methods

– Orthographic projection

– Perspective projection



Orthographic(Orthogonal) Projection

• View volume : Cuboid (직육면체)

• Orthographic projection : Mapping from a cuboid view 

volume to a canonical view volume

– Combination of scaling & translation 

→ “Windowing” transformation
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• Transformation that maps a point (px, py) in a 

rectangular space from (xl, yl) to (xh, yh) to a point 

(px’, py’) in a rectangular space from (xl’, yl’) to

(xh’, yh’)

Windowing Transformation
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Orthographic Projection Matrix

• By extending the matrix to 3D and substituting 

– xh=right, xl=left, xh’=1, xl’=-1

– yh=top, yl=bottom, yh’=1, yl’=-1

– zh=-far, zl=-near, zh’=1, zl’=-1

Morth =



Examples of Orthographic Projection

An object always stay the same size, no matter its distance from the viewer.



Properties of Orthographic Projection

• Not realistic looking

• Good for exact measurement

• Most often used in CAD, architectural drawings, etc. where 
taking exact measurement is important

• Affine transformation

- parallel lines remain parallel

- ratios are preserved

- angles are often not preserved



y

x

z

glOrtho()

• glOrtho(left, right, bottom, top, zNear, zFar)

• : Creates a orthographic projection matrix and 

right-multiplies the current transformation matrix 

by it

• Sign of zNear, zFar:

– positive value: the plane is in front of the camera

– negative value: the plane is behind the camera.

• C ← CMorth



[Practice] glOrtho

import glfw

from OpenGL.GL import *

from OpenGL.GLU import *

import numpy as np

gCamAng = 0.

gCamHeight = 1.

# draw a cube of side 1, centered at the origin.

def drawUnitCube():

glBegin(GL_QUADS)

glVertex3f( 0.5, 0.5,-0.5)

glVertex3f(-0.5, 0.5,-0.5)

glVertex3f(-0.5, 0.5, 0.5)

glVertex3f( 0.5, 0.5, 0.5)

glVertex3f( 0.5,-0.5, 0.5)

glVertex3f(-0.5,-0.5, 0.5)

glVertex3f(-0.5,-0.5,-0.5)

glVertex3f( 0.5,-0.5,-0.5)

glVertex3f( 0.5, 0.5, 0.5)

glVertex3f(-0.5, 0.5, 0.5)

glVertex3f(-0.5,-0.5, 0.5)

glVertex3f( 0.5,-0.5, 0.5)

glVertex3f( 0.5,-0.5,-0.5)

glVertex3f(-0.5,-0.5,-0.5)

glVertex3f(-0.5, 0.5,-0.5)

glVertex3f( 0.5, 0.5,-0.5)

glVertex3f(-0.5, 0.5, 0.5)

glVertex3f(-0.5, 0.5,-0.5)

glVertex3f(-0.5,-0.5,-0.5)

glVertex3f(-0.5,-0.5, 0.5)

glVertex3f( 0.5, 0.5,-0.5)

glVertex3f( 0.5, 0.5, 0.5)

glVertex3f( 0.5,-0.5, 0.5)

glVertex3f( 0.5,-0.5,-0.5)

glEnd()

def drawCubeArray():

for i in range(5):

for j in range(5):

for k in range(5):

glPushMatrix()

glTranslatef(i,j,-k-1)

glScalef(.5,.5,.5)

drawUnitCube()

glPopMatrix()

def drawFrame():

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([1.,0.,0.]))

glColor3ub(0, 255, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([0.,1.,0.]))

glColor3ub(0, 0, 255)

glVertex3fv(np.array([0.,0.,0]))

glVertex3fv(np.array([0.,0.,1.]))

glEnd()



def key_callback(window, key, scancode, action,

mods):

global gCamAng, gCamHeight

if action==glfw.PRESS or

action==glfw.REPEAT:

if key==glfw.KEY_1:

gCamAng += np.radians(-10)

elif key==glfw.KEY_3:

gCamAng += np.radians(10)

elif key==glfw.KEY_2:

gCamHeight += .1

elif key==glfw.KEY_W:

gCamHeight += -.1

def main():

if not glfw.init():

return

window =

glfw.create_window(640,640,‘glOrtho()',

None,None)

if not window:

glfw.terminate()

return

glfw.make_context_current(window)

glfw.set_key_callback(window, key_callback)

while not glfw.window_should_close(window):

glfw.poll_events()

render()

glfw.swap_buffers(window)

glfw.terminate()

if __name__ == "__main__":

main()

def render():

global gCamAng, gCamHeight

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

# draw polygons only with boundary edges

glPolygonMode( GL_FRONT_AND_BACK, GL_LINE )

glLoadIdentity()

# test other parameter values

# near plane: 10 units behind the camera

# far plane: 10 units in front of

the camera

glOrtho(-5,5, -5,5, -10,10)

gluLookAt(1*np.sin(gCamAng),gCamHeight,1*np.cos(

gCamAng), 0,0,0, 0,1,0)

drawFrame()

glColor3ub(255, 255, 255)

drawUnitCube()

# test

# drawCubeArray()



Quiz #2

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the 

above format to be checked for “attendance”.

https://www.slido.com/


Perspective Effects

• Distant objects become 

small.

Vanishing point: The point or points to 

which the extensions of parallel lines appear 

to converge in a perspective drawing



Perspective Projection

• View volume : Frustum (절두체)

• → “Viewing frustum”

• Perspective projection : Mapping from a viewing 

frustum to a canonical view volume



Why this mapping make “perspective”?

Red: viewing frustum, Blue: objects  Original 3D scene



An Example of Perspective Projection

After perspective projection



An Example of Perspective Projection

The camera view



Let’s first consider

3D View Frustum→2D Projection Plane

• Consider the projection of a 3D point on the 

camera plane



41© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 8

Perspective projection

similar triangles:

The size of an object on the screen is
inversely proportional to its distance 
from camera



42© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 8

Homogeneous coordinates revisited

• Perspective requires division

– that is not part of affine transformations

– in affine, parallel lines stay parallel

• therefore not vanishing point

• therefore no rays converging on viewpoint

• “True” purpose of homogeneous coords: 

projection



43© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 8

Homogeneous coordinates revisited

• Introduced w = 1 coordinate as a placeholder

– used as a convenience for unifying translation with 

linear

• Can also allow arbitrary w



44© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 8

Perspective projection

to implement perspective, just move z to w:



Perspective Projection Matrix

• This 3D → 2D projection example gives the basic idea of 
perspective projection.

• What we really have to do is 3D → 3D, View 
Frustum→Canonical View Volume.

• For details for this process, see 6-reference-projection.pdf

• Mpers= 



• glFrustum(left, right, bottom, top, near, far)
• near, far: The distances to the near and far depth clipping planes. Both 

distances must be positive.

• : Creates a perspective projection matrix and right-

multiplies the current transformation matrix by it

• C ← CMpers

glFrustum()



gluPerspective()

• gluPerspective(fovy, aspect, zNear, zFar)
• fovy: The field of view angle, in degrees, in the y-direction.

• aspect: The aspect ratio that determines the field of view in the x-

direction. The aspect ratio is the ratio of x (width) to y (height).

• : Creates a perspective projection matrix and right-

multiplies the current transformation matrix by it

• C ← CMpers



[Practice]

glFrustum(),

gluPerspecti

ve()

def render():

global gCamAng, gCamHeight

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glPolygonMode( GL_FRONT_AND_BACK, GL_LINE )

glLoadIdentity()

# test other parameter values

glFrustum(-1,1, -1,1, .1,10)

# glFrustum(-1,1, -1,1, 1,10)

# test other parameter values

# gluPerspective(45, 1, 1,10)

# test with this line

gluLookAt(5*np.sin(gCamAng),gCamHeight,5*np.cos(gCam

Ang), 0,0,0, 0,1,0)

drawFrame()

glColor3ub(255, 255, 255)

drawUnitCube()

# test

# drawCubeArray()



Quiz #3

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the 

above format to be checked for “attendance”.

https://www.slido.com/


Viewport Transformation
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Recall that...

• 1. Placing objects

→ Modeling transformation

• 2. Placing the “camera”

→ Viewing transformation

• 3. Selecting a “lens”

→ Projection transformation

• 4. Displaying on a “cinema screen”

→ Viewport transformation



Viewport Transformation

• Viewport: a rectangular viewing region of screen

• So, viewport transformation is also a kind of 

windowing transformation.
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Viewport Transformation Matrix

• In the windowing transformation matrix,

• By substituting xh, xl, xh’, ... with corresponding 

variables in viewport transformation,

Mvp =

(xmin, ymin)

width

height



(xmin, ymin)

width

height

glViewport()

• glViewport(xmin, ymin, width, height)

– xmin, ymin, width, height: specified in pixels

• : Sets the viewport

– This function does NOT explicitly multiply a viewport 
matrix with the current matrix.

– Viewport transformation is internally done in 
OpenGL, so you can apply transformation matrices 
starting from a canonical view volume, not a screen 
space.

• Default viewport setting for (xmin, ymin, width, 
height) is (0, 0, window width, window height).

– If you do not call glViewport(), OpenGL uses this 
default viewport setting.



[Practice] glViewport()

def main():

# ...

glfw.make_context_current(window)

glViewport(100,100,200,200)

# ...



Next Time

• Lab in this week:

– Lab assignment 6

• Next lecture:

– 7 - Hierarchical Modeling, Mesh

• Class Assignment #1

– Due: 23:59, May 3, 2019

• Midterm Exam Notice

• Acknowledgement: Some materials come from the lecture slides of
– Prof. Jinxiang Chai, Texas A&M Univ., http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html

– Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cgi

– Prof. Steve Marschner, Cornell Univ., http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html
http://calab.hanyang.ac.kr/cgi-bin/cg.cgi
http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

