
Computer Graphics

6 - Viewing, Projection

Yoonsang Lee

Spring 2019

Topics Covered

• Rendering Pipeline

– Vertex Processing

• Viewing transformation

• Projection Transformation

• Viewport Transformation

Vertex Processing (Transformation Pipeline)

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection

transformation

Viewport

transformation

Viewing

transformation

Modeling

transformation

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

Viewing Transformation

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Viewing

transformation

: Mv

pw

pv

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

pv = Mv pw

Recall that...

• 1. Placing objects

→ Modeling transformation

• 2. Placing the “camera”

→ Viewing transformation

• 3. Selecting a “lens”

→ Projection transformation

• 4. Displaying on a “cinema screen”

→ Viewport transformation

Viewing Transformation

• Placing the camera and expressing all object vertices
from the camera's point of view

• Transform from world to view space is traditionally called
the viewing matrix, Mv

View space

(Camera space)

World space

Translate & rotate (Rigid

transformation)

Mv

pw

pv

Viewing Transformation

• Placing the camera

• → How to set the camera’s position &

orientation?

• Expressing all object vertices from the camera's

point of view

• → How to define the camera’s coordinate

system (frame)?

1. Setting Camera’s Position & Orientation

• Many ways to do this

• One intuitive way is using:

• Eye point

– Position of the camera

• Look-at point

– The target of the camera

• Up vector

– Roughly defines which direction is up

=Look-at point

2. Defining Camera’s Coordinate System

• Given eye point, look-at point, up vector, we can

get camera frame (Peye, u, v, w).

– For details, see 6-reference-viewing.pdf

World space

pw

u

v
w

Peye

View space

(Camera space)

pv

?

Viewing Transformation is the Opposite

Direction

-1

View space

(Camera space)

pv

World space

pw

?

u

v
w

PeyeMv

Mv =

gluLookAt()

gluLookAt (eyex,eyey,eyez,atx,aty,atz,upx, upy,upz)
: creates a viewing matrix and right-multiplies the current

transformation matrix by it

C ← CMv

[Practice] gluLookAt()
import glfw

from OpenGL.GL import *

from OpenGL.GLU import *

import numpy as np

gCamAng = 0.

gCamHeight = .1

def render():

enable depth test (we'll see details later)

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glLoadIdentity()

use orthogonal projection (we'll see details later)

glOrtho(-1,1, -1,1, -1,1)

rotate "camera" position (right-multiply the current matrix by viewing

matrix)

try to change parameters

gluLookAt(.1*np.sin(gCamAng),gCamHeight,.1*np.cos(gCamAng), 0,0,0, 0,1,0)

drawFrame()

glColor3ub(255, 255, 255)

drawTriangle()

def drawFrame():

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([1.,0.,0.]))

glColor3ub(0, 255, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([0.,1.,0.]))

glColor3ub(0, 0, 255)

glVertex3fv(np.array([0.,0.,0]))

glVertex3fv(np.array([0.,0.,1.]))

glEnd()

def drawTriangle():

glBegin(GL_TRIANGLES)

glVertex3fv(np.array([.0,.5,0.]))

glVertex3fv(np.array([.0,.0,0.]))

glVertex3fv(np.array([.5,.0,0.]))

glEnd()

def key_callback(window, key, scancode, action,

mods):

global gCamAng, gCamHeight

if action==glfw.PRESS or action==glfw.REPEAT:

if key==glfw.KEY_1:

gCamAng += np.radians(-10)

elif key==glfw.KEY_3:

gCamAng += np.radians(10)

elif key==glfw.KEY_2:

gCamHeight += .1

elif key==glfw.KEY_W:

gCamHeight += -.1

def main():

if not glfw.init():

return

window =

glfw.create_window(640,640,'gluLookAt()',

None,None)

if not window:

glfw.terminate()

return

glfw.make_context_current(window)

glfw.set_key_callback(window,

key_callback)

while not

glfw.window_should_close(window):

glfw.poll_events()

render()

glfw.swap_buffers(window)

glfw.terminate()

if __name__ == "__main__":

main()

Moving Camera vs. Moving World

• Actually, these are two equivalent operations

• Translate camera by (1, 0, 2) == Translate world by (-1, 0, -2)

• Rotate camera by 60° about y ==Rotate world by -60° about y

Moving Camera vs. Moving World

• Thus you also can use glRotate*() or glTranslate*()
to manipulate the camera!

• Using gluLookAt() is just one option of many other
choices to manipulate the camera.

• By default, OpenGL places a

camera at the origin pointing in

negative z direction.

Modelview Matrix

• As we’ve just seen, moving camera & moving

world are equivalent operations.

• That’s why OpenGL combines a viewing matrix Mv

and a modeling matrix Mm into a modelview matrix

M=MvMm

Quiz #1

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Projection Transformation

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection

transformation

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

Recall that...

• 1. Placing objects

→ Modeling transformation

• 2. Placing the “camera”

→ Viewing transformation (covered in the last class)

• 3. Selecting a “lens”

→ Projection transformation

• 4. Displaying on a “cinema screen”

→ Viewport transformation

Review:Normalized Device Coordinates

• Called normalized device

coordinates (NDC)

• Also known as canonical

view volume

• Remember that you could draw the triangle anywhere

in a 2D square ranging from [-1, -1] to [1, 1].

1

-1

-1 1

x

y

Canonical View “Volume”

• Actually, a canonical view volume is a 3D cube
ranging from [-1,-1,-1] to [1,1,1] in OpenGL

– Its coordinate system is NDC

• Its xy plane is a 2D “viewport”

• Note that NDC in OpenGL is a left-handed
coordinate system

– Viewing direction in NDC : +z direction

• But OpenGL’s projection functions change the
hand-ness – Thus view, world, model spaces use
right-handed coordinate system

– Viewing direction in view space : -z direction

Canonical View Volume

• OpenGL only draws objects inside

the canonical view volume

– To draw objects only in the camera’s

view

– Not to draw objects too near or too far

from the camera

X

Do we always have to use the cube of size 2

as a view volume?

• No. You can set any size visible volume and draw
objects inside it.

– Even you can use “frustums” as well as cuboids

• Then everything in the visible volume is mapped
(projected) into the canonical view volume.

• Then 3D points in the canonical view volume are
projected onto its xy plane as 2D points.

• → Projection transformation

Projection in General

• General definition:

• Transforming points in n-space to m-space (m<n)

Projection in Computer Graphics

• Mapping 3D coordinates to 2D screen
coordinates.

• Two stages:

– Map an arbitrary view volume to a canonical view
volume

– Map 3D points in the canonical view volume onto
its xy plane : But we still need z values of points
for depth test, so do not consider this second stage

• Two common projection methods

– Orthographic projection

– Perspective projection

Orthographic(Orthogonal) Projection

• View volume : Cuboid (직육면체)

• Orthographic projection : Mapping from a cuboid view

volume to a canonical view volume

– Combination of scaling & translation

→ “Windowing” transformation

y

x

z

y

xz

to change hand-ness (to

flip positive z direction)

• Transformation that maps a point (px, py) in a

rectangular space from (xl, yl) to (xh, yh) to a point

(px’, py’) in a rectangular space from (xl’, yl’) to

(xh’, yh’)

Windowing Transformation

(px’, py’)

(px, py)

px

py

1

px’

py’

1

=

px

py

1

px’

py’

1

=

Orthographic Projection Matrix

• By extending the matrix to 3D and substituting

– xh=right, xl=left, xh’=1, xl’=-1

– yh=top, yl=bottom, yh’=1, yl’=-1

– zh=-far, zl=-near, zh’=1, zl’=-1

Morth =

Examples of Orthographic Projection

An object always stay the same size, no matter its distance from the viewer.

Properties of Orthographic Projection

• Not realistic looking

• Good for exact measurement

• Most often used in CAD, architectural drawings, etc. where
taking exact measurement is important

• Affine transformation

- parallel lines remain parallel

- ratios are preserved

- angles are often not preserved

y

x

z

glOrtho()

• glOrtho(left, right, bottom, top, zNear, zFar)

• : Creates a orthographic projection matrix and

right-multiplies the current transformation matrix

by it

• Sign of zNear, zFar:

– positive value: the plane is in front of the camera

– negative value: the plane is behind the camera.

• C ← CMorth

[Practice] glOrtho

import glfw

from OpenGL.GL import *

from OpenGL.GLU import *

import numpy as np

gCamAng = 0.

gCamHeight = 1.

draw a cube of side 1, centered at the origin.

def drawUnitCube():

glBegin(GL_QUADS)

glVertex3f(0.5, 0.5,-0.5)

glVertex3f(-0.5, 0.5,-0.5)

glVertex3f(-0.5, 0.5, 0.5)

glVertex3f(0.5, 0.5, 0.5)

glVertex3f(0.5,-0.5, 0.5)

glVertex3f(-0.5,-0.5, 0.5)

glVertex3f(-0.5,-0.5,-0.5)

glVertex3f(0.5,-0.5,-0.5)

glVertex3f(0.5, 0.5, 0.5)

glVertex3f(-0.5, 0.5, 0.5)

glVertex3f(-0.5,-0.5, 0.5)

glVertex3f(0.5,-0.5, 0.5)

glVertex3f(0.5,-0.5,-0.5)

glVertex3f(-0.5,-0.5,-0.5)

glVertex3f(-0.5, 0.5,-0.5)

glVertex3f(0.5, 0.5,-0.5)

glVertex3f(-0.5, 0.5, 0.5)

glVertex3f(-0.5, 0.5,-0.5)

glVertex3f(-0.5,-0.5,-0.5)

glVertex3f(-0.5,-0.5, 0.5)

glVertex3f(0.5, 0.5,-0.5)

glVertex3f(0.5, 0.5, 0.5)

glVertex3f(0.5,-0.5, 0.5)

glVertex3f(0.5,-0.5,-0.5)

glEnd()

def drawCubeArray():

for i in range(5):

for j in range(5):

for k in range(5):

glPushMatrix()

glTranslatef(i,j,-k-1)

glScalef(.5,.5,.5)

drawUnitCube()

glPopMatrix()

def drawFrame():

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([1.,0.,0.]))

glColor3ub(0, 255, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([0.,1.,0.]))

glColor3ub(0, 0, 255)

glVertex3fv(np.array([0.,0.,0]))

glVertex3fv(np.array([0.,0.,1.]))

glEnd()

def key_callback(window, key, scancode, action,

mods):

global gCamAng, gCamHeight

if action==glfw.PRESS or

action==glfw.REPEAT:

if key==glfw.KEY_1:

gCamAng += np.radians(-10)

elif key==glfw.KEY_3:

gCamAng += np.radians(10)

elif key==glfw.KEY_2:

gCamHeight += .1

elif key==glfw.KEY_W:

gCamHeight += -.1

def main():

if not glfw.init():

return

window =

glfw.create_window(640,640,‘glOrtho()',

None,None)

if not window:

glfw.terminate()

return

glfw.make_context_current(window)

glfw.set_key_callback(window, key_callback)

while not glfw.window_should_close(window):

glfw.poll_events()

render()

glfw.swap_buffers(window)

glfw.terminate()

if __name__ == "__main__":

main()

def render():

global gCamAng, gCamHeight

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

draw polygons only with boundary edges

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)

glLoadIdentity()

test other parameter values

near plane: 10 units behind the camera

far plane: 10 units in front of

the camera

glOrtho(-5,5, -5,5, -10,10)

gluLookAt(1*np.sin(gCamAng),gCamHeight,1*np.cos(

gCamAng), 0,0,0, 0,1,0)

drawFrame()

glColor3ub(255, 255, 255)

drawUnitCube()

test

drawCubeArray()

Quiz #2

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Perspective Effects

• Distant objects become

small.

Vanishing point: The point or points to

which the extensions of parallel lines appear

to converge in a perspective drawing

Perspective Projection

• View volume : Frustum (절두체)

• → “Viewing frustum”

• Perspective projection : Mapping from a viewing

frustum to a canonical view volume

Why this mapping make “perspective”?

Red: viewing frustum, Blue: objects Original 3D scene

An Example of Perspective Projection

After perspective projection

An Example of Perspective Projection

The camera view

Let’s first consider

3D View Frustum→2D Projection Plane

• Consider the projection of a 3D point on the

camera plane

41© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 8

Perspective projection

similar triangles:

The size of an object on the screen is
inversely proportional to its distance
from camera

42© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 8

Homogeneous coordinates revisited

• Perspective requires division

– that is not part of affine transformations

– in affine, parallel lines stay parallel

• therefore not vanishing point

• therefore no rays converging on viewpoint

• “True” purpose of homogeneous coords:

projection

43© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 8

Homogeneous coordinates revisited

• Introduced w = 1 coordinate as a placeholder

– used as a convenience for unifying translation with

linear

• Can also allow arbitrary w

44© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 8

Perspective projection

to implement perspective, just move z to w:

Perspective Projection Matrix

• This 3D → 2D projection example gives the basic idea of
perspective projection.

• What we really have to do is 3D → 3D, View
Frustum→Canonical View Volume.

• For details for this process, see 6-reference-projection.pdf

• Mpers=

• glFrustum(left, right, bottom, top, near, far)
• near, far: The distances to the near and far depth clipping planes. Both

distances must be positive.

• : Creates a perspective projection matrix and right-

multiplies the current transformation matrix by it

• C ← CMpers

glFrustum()

gluPerspective()

• gluPerspective(fovy, aspect, zNear, zFar)
• fovy: The field of view angle, in degrees, in the y-direction.

• aspect: The aspect ratio that determines the field of view in the x-

direction. The aspect ratio is the ratio of x (width) to y (height).

• : Creates a perspective projection matrix and right-

multiplies the current transformation matrix by it

• C ← CMpers

[Practice]

glFrustum(),

gluPerspecti

ve()

def render():

global gCamAng, gCamHeight

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)

glLoadIdentity()

test other parameter values

glFrustum(-1,1, -1,1, .1,10)

glFrustum(-1,1, -1,1, 1,10)

test other parameter values

gluPerspective(45, 1, 1,10)

test with this line

gluLookAt(5*np.sin(gCamAng),gCamHeight,5*np.cos(gCam

Ang), 0,0,0, 0,1,0)

drawFrame()

glColor3ub(255, 255, 255)

drawUnitCube()

test

drawCubeArray()

Quiz #3

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Viewport Transformation

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Viewport

transformation

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

Recall that...

• 1. Placing objects

→ Modeling transformation

• 2. Placing the “camera”

→ Viewing transformation

• 3. Selecting a “lens”

→ Projection transformation

• 4. Displaying on a “cinema screen”

→ Viewport transformation

Viewport Transformation

• Viewport: a rectangular viewing region of screen

• So, viewport transformation is also a kind of

windowing transformation.

1-1

-1

1

y

x

Screen space

(Image space)

Canonical view volume

(looking down +z direction)

ps
pc

Viewport

transformation

: Mvp

-1 ≤ z ≤ 1

(z range of

canonical

view volume)

0 ≤ z ≤ 1

(default

depth buffer

range)

Viewport Transformation Matrix

• In the windowing transformation matrix,

• By substituting xh, xl, xh’, ... with corresponding

variables in viewport transformation,

Mvp =

(xmin, ymin)

width

height

(xmin, ymin)

width

height

glViewport()

• glViewport(xmin, ymin, width, height)

– xmin, ymin, width, height: specified in pixels

• : Sets the viewport

– This function does NOT explicitly multiply a viewport
matrix with the current matrix.

– Viewport transformation is internally done in
OpenGL, so you can apply transformation matrices
starting from a canonical view volume, not a screen
space.

• Default viewport setting for (xmin, ymin, width,
height) is (0, 0, window width, window height).

– If you do not call glViewport(), OpenGL uses this
default viewport setting.

[Practice] glViewport()

def main():

...

glfw.make_context_current(window)

glViewport(100,100,200,200)

...

Next Time

• Lab in this week:

– Lab assignment 6

• Next lecture:

– 7 - Hierarchical Modeling, Mesh

• Class Assignment #1

– Due: 23:59, May 3, 2019

• Midterm Exam Notice

• Acknowledgement: Some materials come from the lecture slides of
– Prof. Jinxiang Chai, Texas A&M Univ., http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html

– Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cgi

– Prof. Steve Marschner, Cornell Univ., http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html
http://calab.hanyang.ac.kr/cgi-bin/cg.cgi
http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

