Let’s first consider
3D View Frustum—2D Projection Plane

 Consider the projection of a 3D point on the
camera plane




Perspective projection

The size of an object on the screen is
inversely proportional to its distance
projection from camera
plane

(O, 2)

similar triangles:
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Homogeneous coordinates revisited

* Perspective requires division
— that is not part of affine transformations
— In affine, parallel lines stay parallel
* therefore not vanishing point
* therefore no rays converging on viewpoint

* “True” purpose of homogeneous coords:
projection
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Homogeneous coordinates revisited

 Introduced w = 1 coordinate as a placeholder
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— used as a convenience for unifying translation with

linear

« Can also allow arbitrary w
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Implications of w
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All scalar multiples of a 4-vector are equivalent
When w is not zero, can divide by w
— therefore these points represent “normal” affine points

When w is zero, it's a point at infinity, a.k.a. a direction
— this is the point where parallel lines intersect
— can also think of it as the vanishing point

Digression on projective space
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Perspective projection

projection
plane

(O, 2)
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So far, 3D View Frustum—2D Projection
Plane

* What we’ve just seen 1s a story of 3D — 2D

projection
plane

(v',—d)
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Now, 3D View Frustum—3D Cuboid

e What we have to do 1s 3D — 3D

— Let’s first consider a viewing frustum — a cuboid with the
same near and far offset (not a canonical view volume)

projection projection
plane iz plane
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3D View Frustum—3D Cuboid
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* Note that z’ 1s independent of x and y, therefore c;=¢; =0

« \We want z depth -near — -near, -far — -far

az + b
z

X =az+b (z)=—X/z=—

* Find 2 unknowns a, b with 2 eq. z’(-n)=-n, z’(-f)=-f
e —a=f+n,b="1n(try it)



Final: 3D View Frustum—3D Canonical
View Volume

n 0 0 0
* By substituting d with n, P= 0 n O 0

0 0 f+n fn
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* Now the remaining work is mapping the cuboid to a
canonical view volume: M,

* Viewing frustum — cuboid — canonical view volume:
M pers™ I\/Iorth P
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Perspective Projection Matrix

* I\/Ipers: I\/Iorth P
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