Computer Graphics

9 – Orientation & Rotation

Yoonsang Lee Spring 2019

What we've done so far

- Lecture 3 5 (Transformation)
- : Movement & placement
- Lecture 5 6 (Vertex Processing)
- : Mapping to 2D screen
- Lecture 7 8 (Mesh, Lighting & Shading)
- : Appearance
- Lecture 9 10 (Orientation & Rotation, Animation)
- : Movement & placement

Topics Covered

- Orientation vs. Rotation
- Degrees of freedom
- 2D orientation & rotation representations
 - Using 1D angle
 - Rotation matrices (2x2)
- 3D orientation & rotation representations
 - Euler angles
 - Axis-angle (Rotation vector)
 - Rotation matrices
 - Unit quaternions

Orientation vs. Rotation, Degrees of freedom

Orientation vs. Rotation

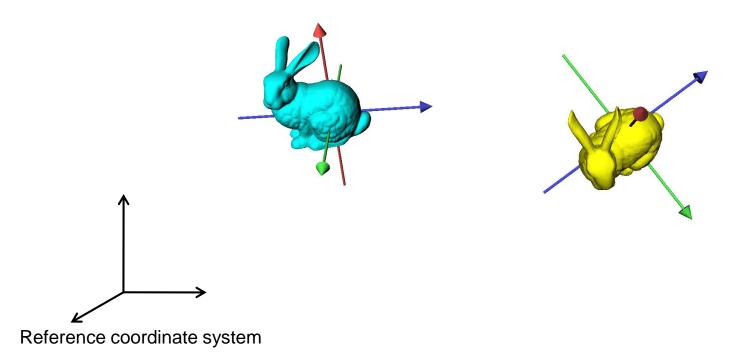
Rotation

Circular movement

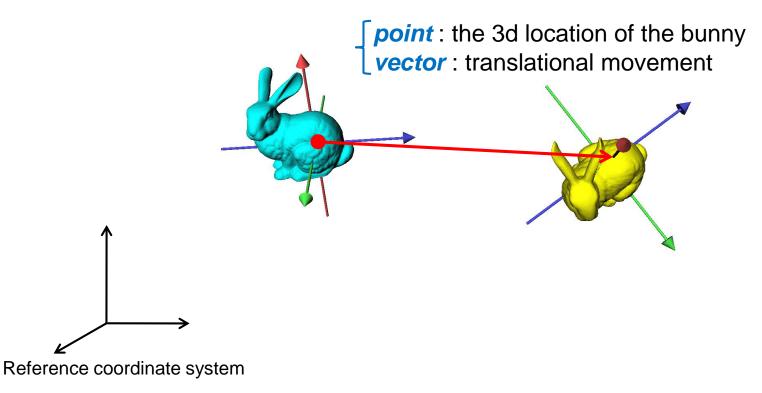
Orientation

- The state of being oriented
- Given a coordinate system, the orientation of an object can be represented as a rotation from a reference pose

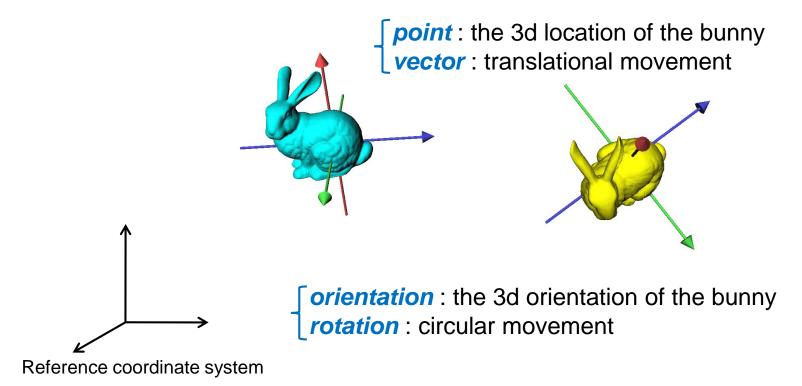
(point : vector) is similar to (orientation : rotation) Both represent a sort of (state : movement)



(point : vector) is similar to (orientation : rotation) Both represent a sort of (state : movement)



(point : vector) is similar to (orientation : rotation) Both represent a sort of (state : movement)



- Point & vector
 - (point) + (point) \rightarrow (UNDEFINED)
 - (vector) \pm (vector) \rightarrow (vector)
 - (point) \pm (vector) \rightarrow (point)
 - (point) (point) \rightarrow (vector)
- Orientation & rotation
 - (orientation) (+) (orientation) \rightarrow (UNDEFINED)
 - (rotation) (\pm) (rotation) \rightarrow (rotation)
 - (orientation) (\pm) (rotation) \rightarrow (orientation)
 - (orientation) (-) (orientation) \rightarrow (rotation)

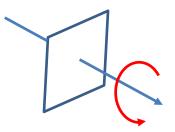
Not vector addition & subtraction

Degrees of Freedom (DOF)

• The number of **independent parameters** that define **a unique configuration**

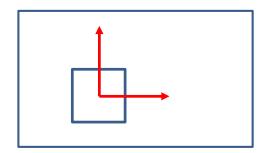
Translation along one direction

: 1 DOF



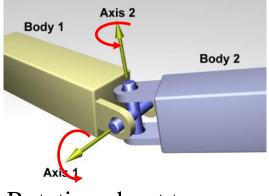
Rotation about an axis

: 1 DOF



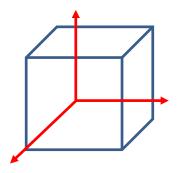
Translation on a plane

: 2 DOF



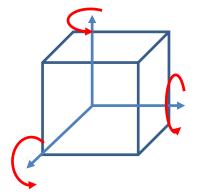
Rotation about two axes

: 2 DOF

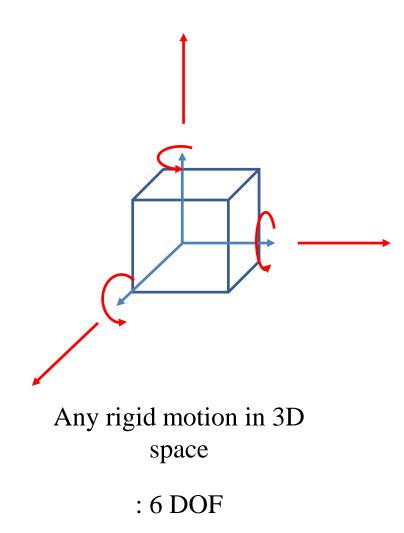


Translation in 3D space

: 3 DOF



Rotation in 3D space : 3 DOF

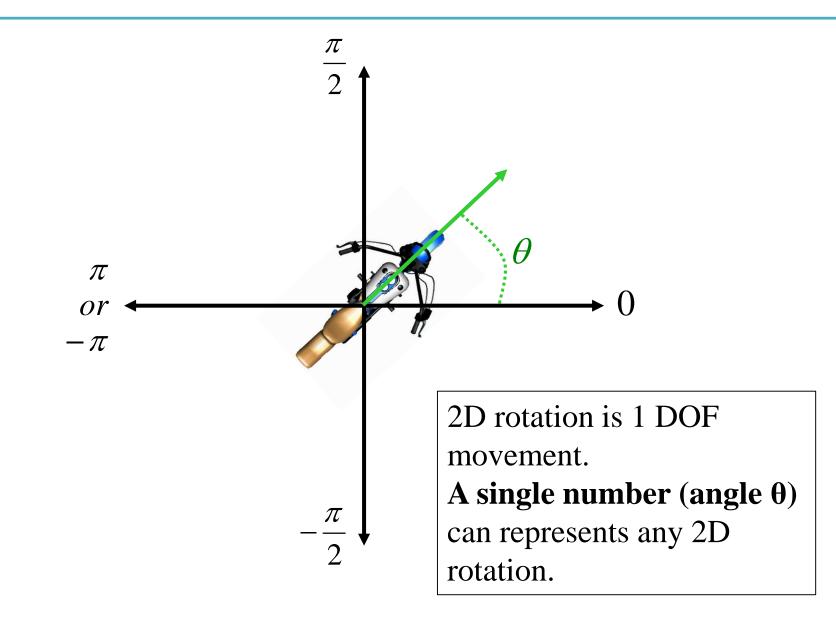


Quiz #1

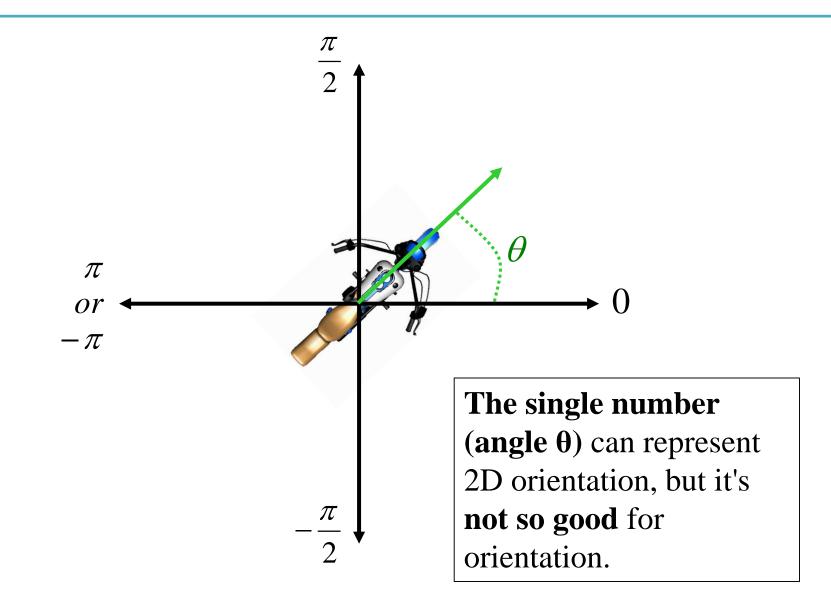
- Go to <u>https://www.slido.com/</u>
- Join #cg-hyu
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

2D & 3D orientation & rotation representations

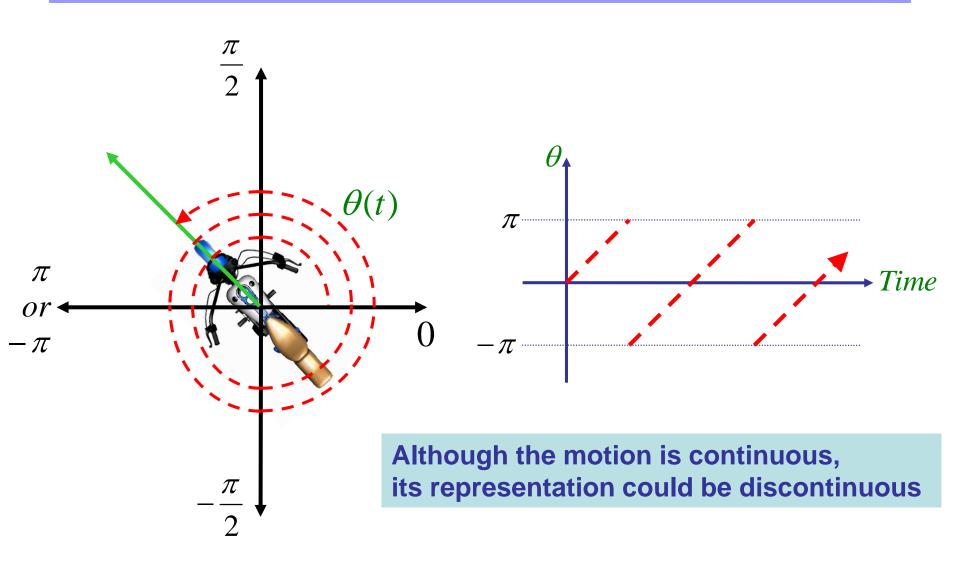
2D Rotation



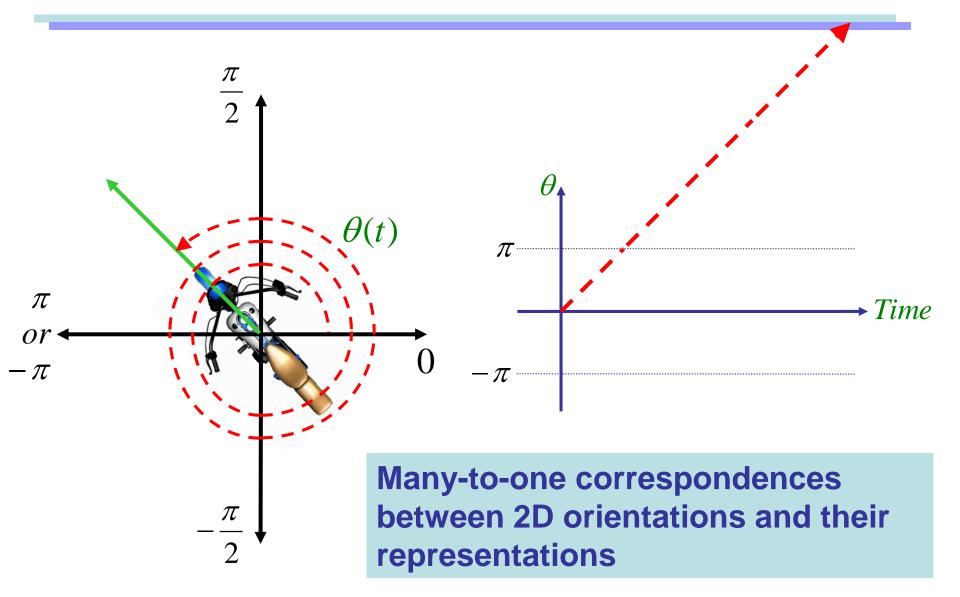
2D Orientation



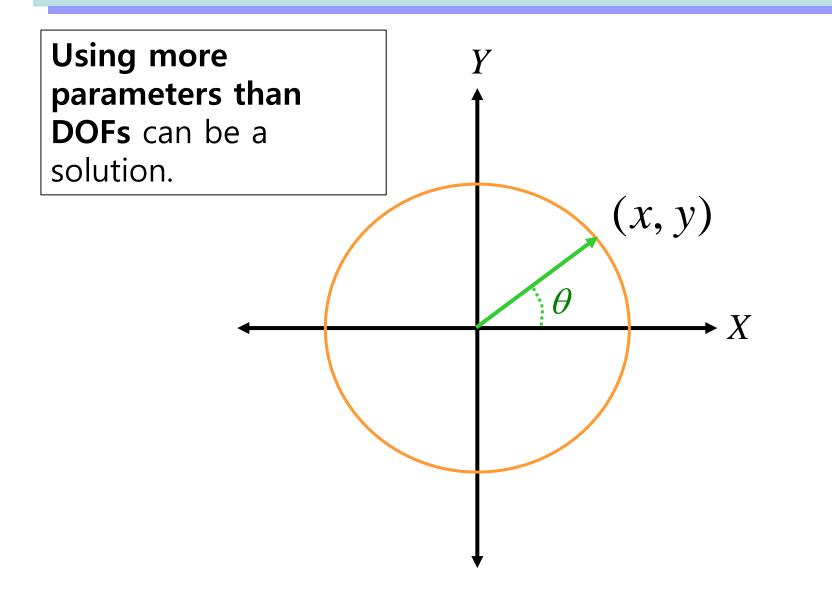
2D Orientation



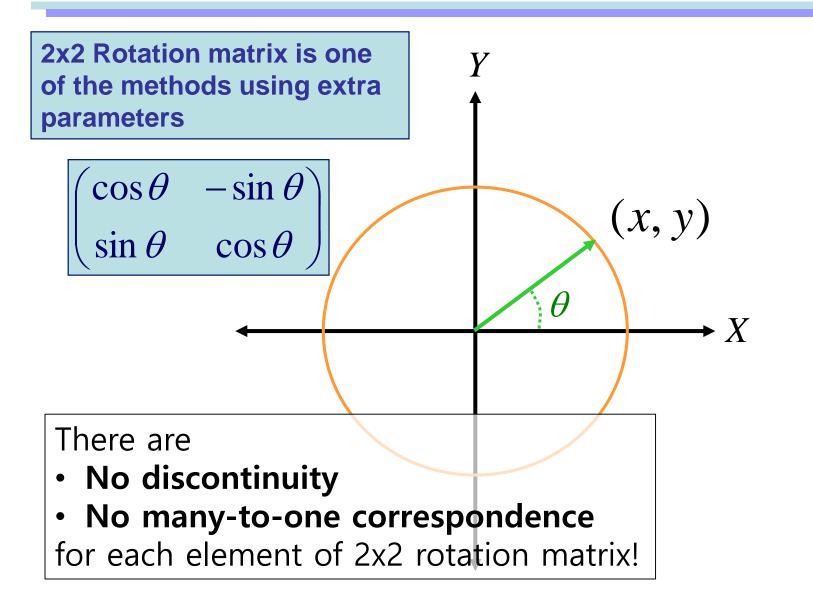
2D Orientation



Extra Parameter



Extra Parameter



2D Rotation and Orientation

2D Rotation

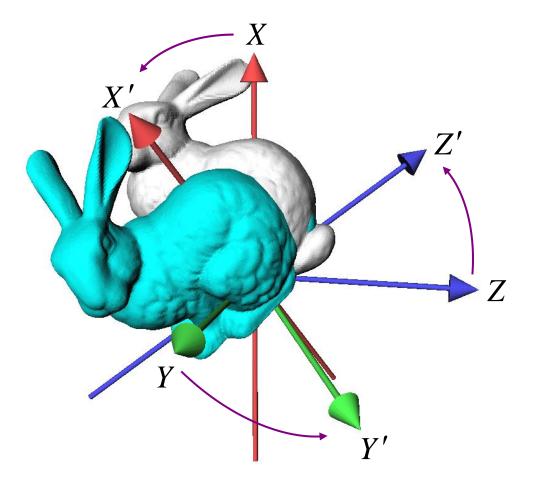
 The consequence of any 2D rotational movement can be uniquely represented by a turning angle

• 2D Orientation

- The non-singular parameterization of **2D orientations** requires extra parameters
 - E.g.) 2x2 rotation matrices

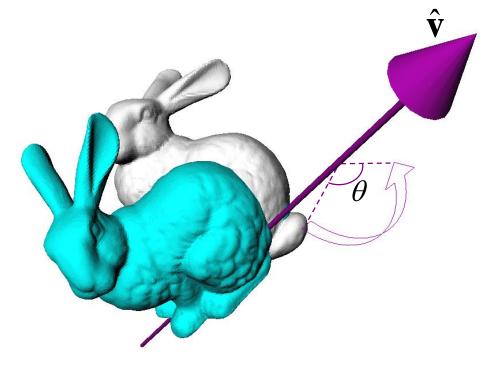
3D Rotation

• Given two arbitrary orientations of a rigid object,



3D Rotation

• We can always find a fixed axis of rotation and an angle about the axis



Euler's Rotation Theorem

The general displacement of a rigid body with one point fixed is a rotation about some axis

Leonhard Euler (1707-1783)

In other words,

- Arbitrary 3D rotation equals to one rotation around an axis
- Any 3D rotation leaves one vector unchanged

Describing 3D Rotation & Orientation

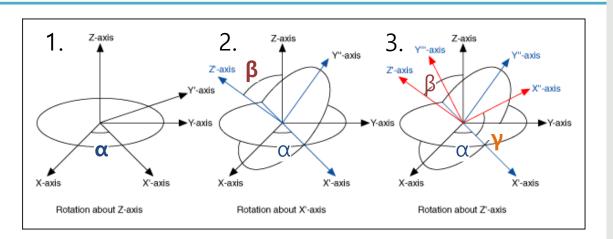
• Describing 3D rotation & orientation is more complicated than 2D.

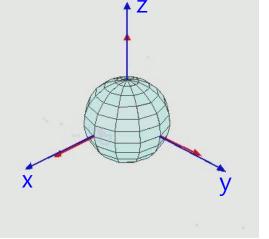
- Many ways to do it
 - Euler angles
 - Axis-angle (Rotation vector)
 - Rotation matrices
 - Unit quaternions

Euler Angles

- Express any arbitrary 3D rotation using **three rotation angles about three principle axes**
 - x, y, z axes

Example: ZXZ Euler Angles





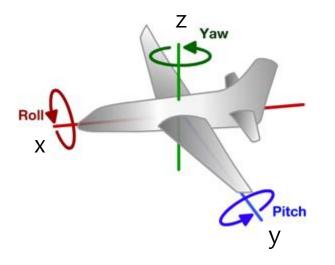
• 1. Rotate about Z-axis by α

https://commons.wikimedia.org/w iki/File:Euler2a.gif

- 2. Rotate about X-axis of the new frame by β
- 3. Rotate about Z-axis of the new frame by γ

$$\mathsf{R} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos \beta & -\sin \beta\\ 0 & \sin \beta & \cos \beta \end{bmatrix} \begin{bmatrix} \cos \gamma & -\sin \gamma & 0\\ \sin \gamma & \cos \gamma & 0\\ 0 & 0 & 1 \end{bmatrix}$$
$$\mathsf{R} = \mathsf{R}_{\mathsf{Z}}(\alpha) \qquad \mathsf{R}_{\mathsf{X}}(\beta) \qquad \mathsf{R}_{\mathsf{Z}}(\gamma)$$

Example: Yaw-Pitch-Roll Convention (**ZYX Euler Angles**)



- Common for describing the orientation of aircrafts
- 1. Rotate about Z-axis by yaw angle
- 2. Rotate about Y-axis of the new frame by pitch angle
- 3. Rotate about X-axis of the new frame by roll angle

 $R = R_z(yaw) R_y(pitch) R_x(roll)$

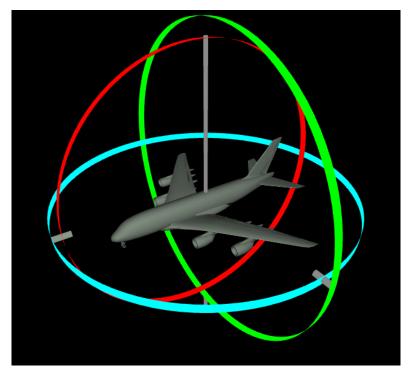
Recall: Rotation Matrix in 3D

View looking down -x axis: **Rotation about x axis:** $\mathbf{R}_{x,\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$ x coordinate is unchanged by **Rotation about y axis:** rotation about x View looking down -y axis: $\mathbf{R}_{y,\theta} = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ \hline \neg \sin\theta & 0 & \cos\theta \end{bmatrix}$ Ζ. Rotation about z axis: $\mathbf{R}_{z,\theta} = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$ ►x z coordinate is unchanged by rotation about z

Euler Angles

- Possible 12 combinations
 - XYZ, XYX, XZY, XZX
 - YZX, YZY, YXZ, YXY
 - ZXY, ZXZ, ZYX, ZYZ

[Practice] Euler Angles Online Demo

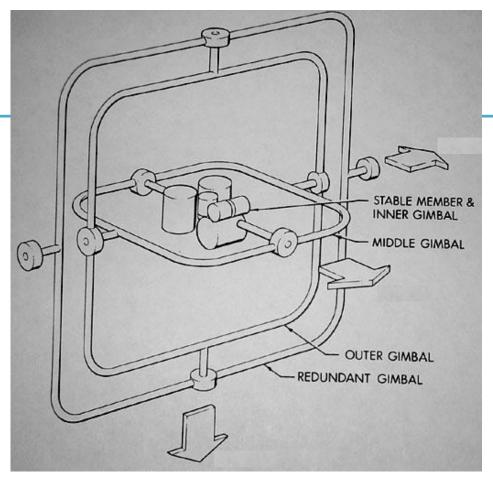


http://www.ctralie.com/Teaching/COMPS CI290/Materials/EulerAnglesViz/

• Try to change yaw, pitch, roll angles

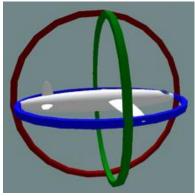
Gimbal

- Hardware implementation of Euler angles
- Used in
 - Camera systems: to stabilize the camera movement
 - Inertial navigation systems (INS): to get the current orientation of aircrafts or ships

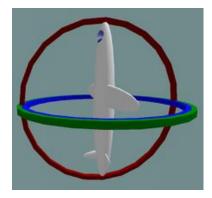


Gimbal Lock

- One potential problem that Euler angles can suffer from is 'gimbal lock'
- This results when two axes effectively line up, resulting in a temporary loss of a degree of freedom



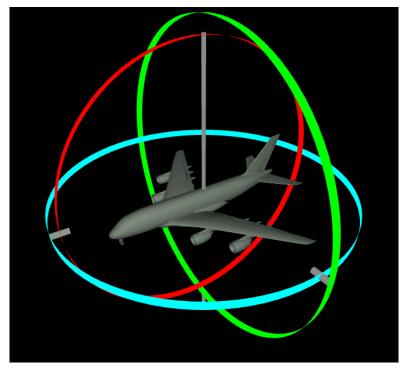
Normal situation. The plane can rotate in any directions



Gimbal lock: two out of the three gimbals are in the same plane, one DoF is lost

Euler angles have singularities, i.e., it loses DoFs (can't move in a certain direction) at some configurations
 GSCT, KAIST 33

[Practice] Gimbal Lock



http://www.ctralie.com/Teaching/COMPS Cl290/Materials/EulerAnglesViz/

- Make gimbal lock by aligning two of three rotation axes
 - Set pitch to 90 degrees

[Practice] Euler Angles in OpenGL

• Start with the practice code from the previous lecture (8-Lighting&Shading).

• Just replace render() function

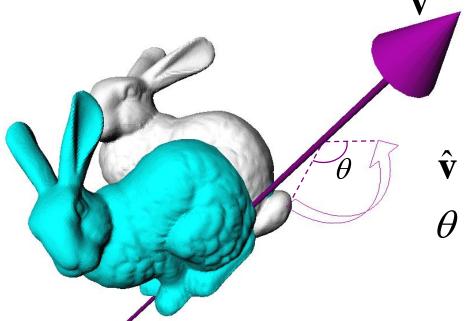
```
def render():
                                               # ZYX Euler angles
                                               t = qlfw.get time()
    global gCamAng, gCamHeight
                                               xang = t
                                               yang = np.radians(30)
glClear (GL COLOR BUFFER BIT | GL DEPTH BUFFER
BIT)
                                               zang = np.radians(30)
                                               M = np.identity(4)
                                               Rx = np.array([[1,0,0]],
    glEnable (GL DEPTH TEST)
                                                               [0, np.cos(xang), -np.sin(xang)],
                                                               [0, np.sin(xang), np.cos(xang)]])
    glMatrixMode (GL PROJECTION)
    glLoadIdentity()
                                               Ry = np.array([[np.cos(yang), 0, np.sin(yang)],
    gluPerspective(45, 1, 1, 10)
                                                              [0,1,0],
                                                               [-np.sin(yang), 0, np.cos(yang)])
                                               Rz = np.array([[np.cos(zang), -np.sin(zang), 0])
    glMatrixMode (GL MODELVIEW)
    glLoadIdentity()
                                                               [np.sin(zang), np.cos(zang), 0],
                                                               [0, 0, 1]])
                                               M[:3,:3] = Rz @ Ry @ Rx
gluLookAt(5*np.sin(gCamAng),gCamHeight,5*np
.cos(gCamAng), 0,0,0, 0,1,0)
                                               glMultMatrixf(M.T)
    # draw global frame
                                               # # The same ZYX Euler angles with OpenGL functions
    drawFrame()
                                               # glRotate(30, 0,0,1)
                                               # glRotate(30, 0,1,0)
                                               # glRotate(np.degrees(xang), 1,0,0)
    glEnable(GL LIGHTING)
    glEnable(GL LIGHT0)
    glEnable(GL RESCALE NORMAL)
                                               glScalef(.25,.25,.25)
    # set light properties
                                               # draw cubes
    lightPos = (4., 5., 6., 1.)
                                               glMaterialfv(GL FRONT, GL AMBIENT AND DIFFUSE, (.5,.5,.5,1.))
                                               drawCube glDrawArray()
    glLightfv(GL LIGHT0, GL POSITION,
lightPos)
                                               qlTranslatef(2.5,0,0)
                                               glMaterialfv(GL FRONT, GL AMBIENT AND DIFFUSE, (1.,0.,0.,1.))
    ambientLightColor = (.1, .1, .1, .1, .1)
                                               drawCube glDrawArray()
    diffuseLightColor = (1., 1., 1., 1.)
    specularLightColor = (1., 1., 1., 1.)
    glLightfv(GL LIGHT0, GL AMBIENT,
                                               qlTranslatef(-2.5, 2.5, 0)
ambientLightColor)
                                               glMaterialfv(GL FRONT, GL AMBIENT AND DIFFUSE, (0.,1.,0.,1.))
                                               drawCube glDrawArray()
    glLightfv(GL LIGHTO, GL DIFFUSE,
diffuseLightColor)
    glLightfv(GL LIGHT0, GL SPECULAR,
                                               glTranslatef (0, -2.5, 2.5)
specularLightColor)
                                               glMaterialfv(GL FRONT, GL AMBIENT AND DIFFUSE, (0.,0.,1.,1.))
                                               drawCube glDrawArray()
```

glDisable(GL LIGHTING)

Quiz #2

- Go to <u>https://www.slido.com/</u>
- Join #cg-hyu
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Axis-Angle (Rotation Vector)



 $\hat{\mathbf{v}}$: rotation axis (unit vector) θ : scalar angle

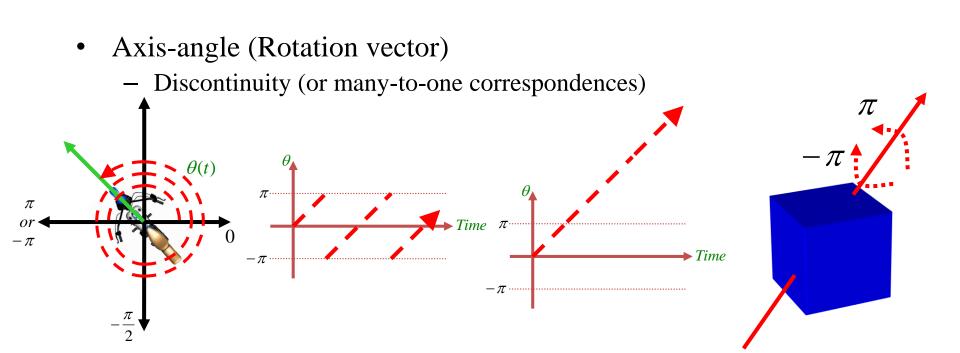
• Rotation vector (3 parameters)

$$\mathbf{v} = \boldsymbol{\theta} \ \hat{\mathbf{v}} = (x, y, z)$$

• Axis-Angle (1+2 parameters) $(\theta, \hat{\mathbf{v}})$

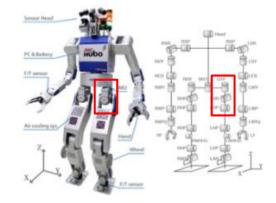
3D Orientation

- Euler angles and axis-angle use 3 parameters.
- Expressing 3D orientation using 3 parameters has problems:
- Euler angles
 - Discontinuity (or many-to-one correspondences)
 - Gimbal lock



3D Orientation

- To avoid these problems, we need more parameters than DOFs
 - Rotation matrices
 - Unit quaternions
- But Euler angles is still meaningful because
 - It's the most common way to implement actuated 3 DOF rotational joints in real world.
 - No need to "normalize" the numbers.



Rotation Matrices

• Rotation in 3D space can be represented as 3x3 matrix:

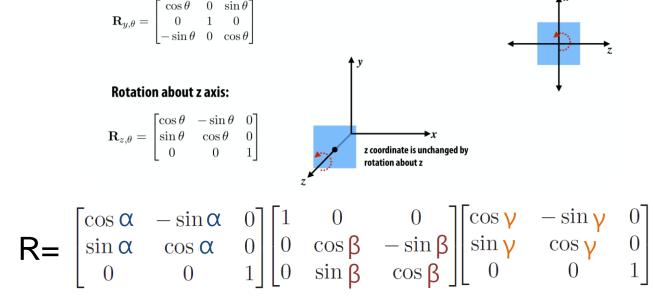
Rotation about x axis:

Rotation about y axis:

 $\mathbf{R}_{x,\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$

Rotation matrix about x, y, z axis

Rotation matrix from ZXZ Euler angles



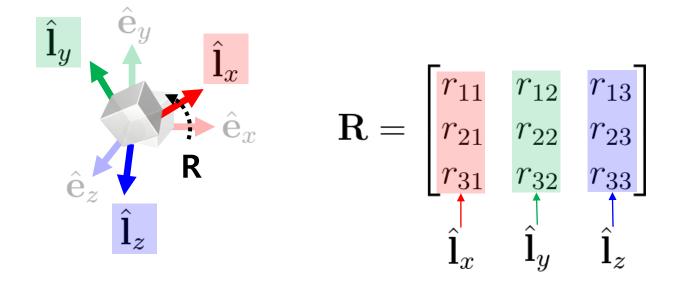
x coordinate is unchanged by

rotation about x

View looking down -x axis:

View looking down -y axis:

Meaning of Rotation Matrix



- A rotation matrix defines
 - Orientation of new rotated frame or,
 - Rotation from a global frame to be that rotated frame

Mathematical Properties of Rotation Matrix

1.
$$\mathbf{R}\mathbf{R}^T = \mathbf{R}^T\mathbf{R} = \mathbf{I}$$

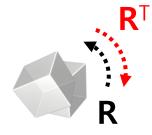
2.
$$det(\mathbf{R}) = 1$$

• For details, see 9-reference-rotmat-properties.pdf

- A rotation matrix is an **orthogonal matrix with determinant 1**
 - Sometimes it is called *special orthogonal matrix*
 - A set of rotation matrices of size 3 forms a *special* orthogonal group, SO(3)

Geometric Properties of Rotation Matrix

- \mathbf{R}^{T} is an inverse rotation of \mathbf{R}
 - Because, $\mathbf{R}\mathbf{R}^T = \mathbf{I} \iff \mathbf{R}^{-1} = \mathbf{R}^T$



- $\mathbf{R}_1 \mathbf{R}_2$ is a rotation matrix as well (composite rotation) - proof) $(\mathbf{R}_1 \mathbf{R}_2)^T (\mathbf{R}_1 \mathbf{R}_2) = \mathbf{R}_2^T \mathbf{R}_1^T \mathbf{R}_1 \mathbf{R}_2 = \mathbf{R}_2^T \mathbf{R}_2 = \mathbf{I}$ and $\det(\mathbf{R}_1 \mathbf{R}_2) = \det(\mathbf{R}_1) \cdot \det(\mathbf{R}_2) = 1$
- The length of vector **v** is not changed after applying a rotation matrix **R**

- proof)
$$\|\mathbf{R}\mathbf{v}\|^2 = (\mathbf{R}\mathbf{v})^T (\mathbf{R}\mathbf{v}) = \mathbf{v}^T \mathbf{R}^T \mathbf{R}\mathbf{v} = \mathbf{v}^T \mathbf{v} = \|\mathbf{v}\|^2$$

[Practice] Properties of Rotation Matrix

• Start with the previous practice code

• Just replace render() function

```
def render():
    global gCamAng, gCamHeight
    glClear (GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT)
    glEnable (GL DEPTH TEST)
    glMatrixMode (GL PROJECTION)
    glLoadIdentity()
    gluPerspective (45, 1, 1, 10)
    glMatrixMode (GL MODELVIEW)
    glLoadIdentity()
gluLookAt(5*np.sin(gCamAng),gCamHeight,5*np.cos(gCamAng),
0, 0, 0, 0, 1, 0
    drawFrame() # draw global frame
    glEnable (GL LIGHTING)
    glEnable(GL LIGHT0)
    glEnable(GL RESCALE NORMAL) # rescale normal
    glLightfv(GL LIGHT0, GL POSITION, (1.,2.,3.,1.))
    glLightfv(GL LIGHTO, GL AMBIENT, (.1,.1,.1,))
    glLightfv(GL LIGHT0, GL DIFFUSE, (1.,1.,1.,))
    glLightfv(GL LIGHT0, GL SPECULAR, (1.,1.,1.,))
    # ZYX Euler angles
    t = qlfw.get time()
    xanq = t
    yang = np.radians(30)
    zang = np.radians(30)
   M = np.identity(4)
    Rx = np.array([[1,0,0]],
                   [0, np.cos(xang), -np.sin(xang)],
                   [0, np.sin(xang), np.cos(xang)]])
    Ry = np.array([[np.cos(yang), 0, np.sin(yang)],
                   [0,1,0],
                   [-np.sin(yang), 0, np.cos(yang)]])
    Rz = np.array([[np.cos(zang), -np.sin(zang), 0],
                   [np.sin(zang), np.cos(zang), 0],
                   [0, 0, 1]])
```

R = Rz @ Ry @ Rx# # check inverse rotation # R = Rz @ Ry @ Rx.T# # check R @ R.T # print(R @ R.T) # # check determinant # print(np.linalg.det(R)) M[:3,:3] = RglMultMatrixf(M.T) glScalef(.25,.25,.25) # draw cubes glMaterialfv(GL FRONT, GL AMBIENT AND DIFFUSE, (.5,.5,.5,1.)) drawCube glDrawArray() glTranslatef(2.5,0,0)glMaterialfv(GL FRONT, GL AMBIENT AND DIFFUSE, (1.,0.,0.,1.)) drawCube glDrawArray() glTranslatef(-2.5, 2.5, 0)glMaterialfv(GL FRONT, GL AMBIENT AND DIFFUSE, (0.,1.,0.,1.)) drawCube glDrawArray() qlTranslatef(0, -2.5, 2.5)

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, (0.,0.,1.,1.)) drawCube_glDrawArray()

glDisable(GL LIGHTING)

Rotation Matrix for Rotation about an Arbitrary Axis

- Recall Euler's Rotation Theorem:
 - Arbitrary 3D rotation equals to one rotation around an axis
 - How to compute the rotation matrix for given axis vector $u=(u_x,u_y,u_z)$ by angle θ ?
- A naive, inefficient method:
 - Step 1: rotate the axis u so that it is aligned with the Z-axis
 - Step 2: rotate about the Z-axis by the angle θ
 - Step 3: rotate the Z-axis back to the original axis
 - For details, see 9-reference-naive-rotvec2rotmat.pdf

Rotation Matrix for Rotation about an Arbitrary Axis

• More efficient solution: Rodrigues' rotation formula

• Rotation about a normalized axis vector $u=(u_x,u_y,u_z)$ by angle θ :

$$R = \begin{bmatrix} \cos\theta + u_x^2 \left(1 - \cos\theta\right) & u_x u_y \left(1 - \cos\theta\right) - u_z \sin\theta & u_x u_z \left(1 - \cos\theta\right) + u_y \sin\theta \\ u_y u_x \left(1 - \cos\theta\right) + u_z \sin\theta & \cos\theta + u_y^2 \left(1 - \cos\theta\right) & u_y u_z \left(1 - \cos\theta\right) - u_x \sin\theta \\ u_z u_x \left(1 - \cos\theta\right) - u_y \sin\theta & u_z u_y \left(1 - \cos\theta\right) + u_x \sin\theta & \cos\theta + u_z^2 \left(1 - \cos\theta\right) \end{bmatrix}$$

(You do not have to memorize this)

Quiz #3

- Go to <u>https://www.slido.com/</u>
- Join #cg-hyu
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Quaternions

• Complex numbers can be used to represent 2D rotations $\sum_{y=x+iy}^{Im} z=x+iy$

$$z = x + iy$$
 where $i^2 = -1$

• Basic idea: Quaternion is its extension to 3D space

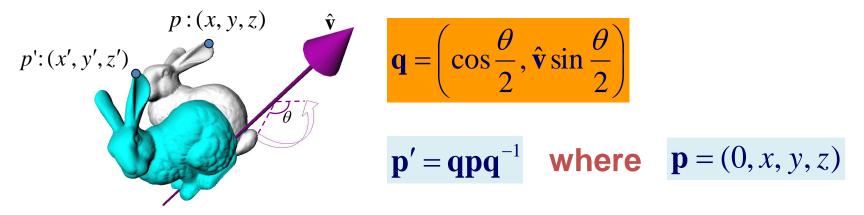
q = w + ix + jy + kz where $i^2 = j^2 = k^2 = ijk = -1$ $ij = k, \quad jk = i, \quad ki = j$ $ji = -k, \, kj = -i, \, ik = -j$

Unit Quaternions

• Unit quaternions represent 3D rotations

$$q = w + ix + jy + kz = (w, x, y, z) = (w, v) w2 + x2 + y2 + z2 = 1$$

• Rotation about axis $\hat{\mathbf{v}}$ by angle $\boldsymbol{\theta}$



Unit Quaternions

• For details, see 9-reference-quaternions.pdf

- Antipodal equivalence
 - q and –q represent the same rotation
 - 2-to-1 mapping: Each individual rotation is represented by **two** quaternions

Which Representation to Use?

- 3D orientation & rotation representation
 - Euler angles
 - Axis-angle (Rotation vector)
 - Rotation matrices
 - Unit quaternions
- Which one to use?
- General recommendation: **rotation matrices** or **unit quaternions**.
- But you may need other representations depending on the context.
 - Euler angles are useful for hardware implementation of ball joints.

Which Representation to Use?

• Reason: Euler angles and axis-angle have problems

- Euler angles
 - Discontinuity (or many-to-one correspondences)
 - Gimbal lock

- Axis-angle (Rotation vector)
 - Discontinuity (or many-to-one correspondences)

Which Representation to Use?

- Rotation matrices and unit quaternions do not have discontinuity or gimbal lock problems
 - Because they use more parameters (rotation matrix: 9, unit quaternion: 4) than DOFs of 3D orientation/rotation (3)

• Rotation matrices vs. Unit quaternions ?

Rotation Matrix vs. Unit Quaternion

- Equivalent in many aspects
 - Redundant
 - No singularity
 - Can be converted from & to axis-angle representation
- Why quaternions ?
 - Fewer parameters
 - Simpler algebra
 - Easy to fix numerical error
- Why rotation matrices ?
 - One-to-one correspondence
 - Handle rotation and translation in a uniform way
 - Eg) 4x4 homogeneous matrices

Conversion Between Representations

- Axis-angle → Rotation matrix
 - Rodrigues' rotation formula, ...
- Rotation matrix \rightarrow Axis-angle
 - Several ways, we'll see one of them in next lecture.

• Euler angles \rightarrow Rotation matrix

- Building canonical rotation matrices $(\mathbf{R}_x, \mathbf{R}_y, \mathbf{R}_z)$ and composing them

• Rotation matrix \rightarrow Euler angles

- Several ways, but not covered in this class

• Unit quaternion ↔ Rotation matrix

- Several ways, but not covered in this class

Next Time

- Lab in this week:
 Lab assignment 9
- Next lecture:
 - 10 Animation

- Acknowledgement: Some materials come from the lecture slides of
 - Prof. Jehee Lee, SNU, <u>http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.html</u>
 - Prof. Taesoo Kwon, Hanyang Univ., <u>http://calab.hanyang.ac.kr/cgi-bin/cg.cgi</u>
 - Prof. Kayvon Fatahalian and Prof. Keenan Crane, CMU, http://15462.courses.cs.cmu.edu/fall2015/
 - Prof. Sung-Hee Lee, KAIST