Let's compute the rotation matrix R

How to compute $\quad R_{a z} \quad$ (Axis a to axis z)

1. Let the normalize axis

$$
\begin{aligned}
a=\frac{\text { axis }}{\| \text { axis } \|} \approx & (0.27,0.53,0.80) \\
\|v\|=\sqrt{v \cdot v}= & x^{2}+y^{2}+z^{2} \\
& \text { where } \quad v=(x, y, z)
\end{aligned}
$$

2. Calculate vector p that is perpendicular to both a and Z -axis

$$
p=\frac{a \times(0,0,1)}{\|a \times(0,0,1)\|}
$$

How to compute

3. after rotation $R_{a z}$

How to compute $R_{a z}$

3. Then after the rotation $R_{a z}$

$$
\begin{array}{ccc}
R_{a z} a & \text { becomes } & (0,0,1) \\
R_{a z} p & \text { becomes } & p \\
R_{a z}(p \times a) & \text { becomes } & p \times(0,0,1)
\end{array}
$$

Therefore,
Finally,

$$
R_{a z}=\left(\begin{array}{ll}
0 & {[p} \\
0 & {[p]} \\
1 & {[p \times(0,0,1)]}
\end{array}\right)([a][p][p \times a])^{-1}
$$

Matlab codes:
> $\mathrm{z}=[0 ; 0 ; 1]$
> Raz=[z p cross(p,z)] *inv([a p cross(p,a)])

Finally,

- The rotation matrix

$$
R=R_{a z}^{-1} R_{z} R_{a z}
$$

axis=(0.267261 0.5345220 .801784$)$

