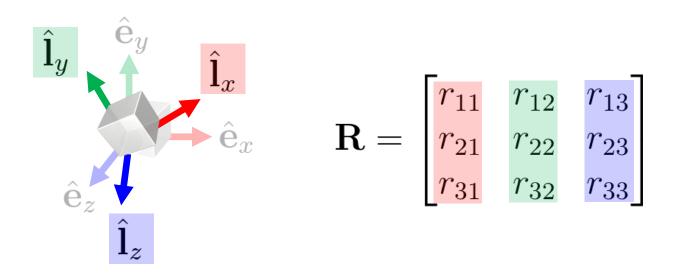


- 1a. The dot product of any row or column with itself equals one
 - Because they are unit vectors

$$\|\hat{\mathbf{l}}_x\|^2 = \|\hat{\mathbf{l}}_y\|^2 = \|\hat{\mathbf{l}}_z\|^2 = 1$$

$$(\|v\| = \sqrt{v \cdot v} = x^2 + y^2 + z^2)$$



- 1b. The dot product of any row with any other row equals zero
- 1c. The dot product of any column with any other column equals zero
 - Because they are perpendicular to each other

$$\hat{\mathbf{l}}_x \cdot \hat{\mathbf{l}}_y = \hat{\mathbf{l}}_y \cdot \hat{\mathbf{l}}_z = \hat{\mathbf{l}}_x \cdot \hat{\mathbf{l}}_z = 0$$

• From the property 1a, 1b, 1c,

$$\textbf{1.} \ \mathbf{R}\mathbf{R}^T = \mathbf{R}^T\mathbf{R} = \mathbf{I} \begin{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} r_{11} & r_{21} & r_{31} \\ r_{12} & r_{22} & r_{32} \\ r_{13} & r_{23} & r_{33} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix})$$

- A matrix having this property is called an orthogonal matrix
 - So, a rotation matrix is an orthogonal matrix
 - But it has one more property; its determinant is 1

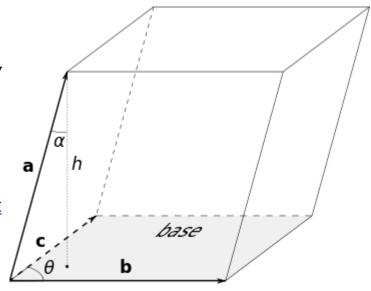
Determinant of 3x3 Matrix

- There are several ways to calculate a matrix determinant
- For 3x3 matrices, one can use scalar triple product

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \det egin{bmatrix} a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 \ c_1 & c_2 & c_3 \end{bmatrix} = \det egin{bmatrix} a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 \end{bmatrix} \quad \left(\det(A^{\mathrm{T}}) = \det(A) \right)$$

 $|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$ = the volume of the parallelepiped spanned by \mathbf{a} , \mathbf{b} , and \mathbf{c}

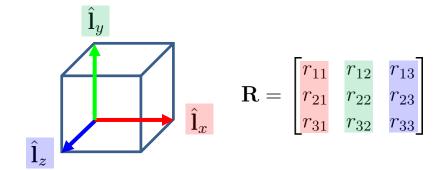
See more: https://mathinsight.org/scalar-triple-product



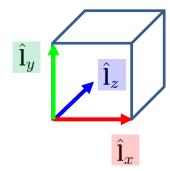
Determinant of 3x3 Orthogonal Matrix

If Q is an orthogonal matrix, det(Q) = +1 or -1
proof) 1 = det(I) = det(Q^TQ) = det(Q^T) det(Q) = (det(Q))².

• $det(\mathbf{Q}) = +1 \rightarrow rotation$



- $det(\mathbf{Q}) = -1 \rightarrow (rotated) reflection$
 - Meaning that one axis is "flipped"



2.
$$\det(\mathbf{R}) = 1$$

- To sum up, a rotation matrix is an orthogonal matrix with determinant 1
 - Sometimes it is called *special orthogonal matrix*
 - A set of rotation matrices of size 3 forms a special orthogonal group, SO(3)