Properties of Rotation Matrix

 la. The dot product of any row or column with itself
equals one
— Because they are unit vectors

|L]* = [, [I* = [|L)* =1
(vl = V7o =x2 +y2 +2?)



Properties of Rotation Matrix
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1b. The dot product of any row with any other row equals zero

1c. The dot product of any column with any other column equals
Zero

— Because they are perpendicular to each other
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Properties of Rotation Matrix

* From the property 1a, 1b, 1c,
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« A matrix having this property is called an
orthogonal matrix
— S0, a rotation matrix is an orthogonal matrix
— But it has one more property; its determinant is 1



Determinant of 3x3 Matrix

* There are several ways to calculate a matrix determinant
« For 3x3 matrices, one can use scalar triple product

a ao Qs aq bl C1
a-(bxc)=det | b by by|=det|as by co
a3 by c3| (det(AT) = det(A))
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la- (b x c¢)| =the volume of the
parallelepiped spanned by
a,b,andc

See more; https://mathinsight.org/scalar triple product



https://mathinsight.org/scalar_triple_product

Determinant of 3x3 Orthogonal Matrix

 If Q Is an orthogonal matrix, det(Q) =+1 or -1

— proof) 1 = det(I) = det (QTQ) = det (QT) det(Q) = (det(Q))".
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e det(Q) = +1 — rotation E— \
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e det(Q) = -1 — (rotated) reflection

— Meaning that one axis 1s “flipped”
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Properties of Rotation Matrix

2. det(R) =1

« To sum up, a rotation matrix is an orthogonal
matrix with determinant 1
— Sometimes it is called special orthogonal matrix

— A set of rotation matrices of size 3 forms a special
orthogonal group, SO(3)



