
Creative Software Design

6 – Class

Yoonsang Lee

Fall 2020

Midterm Exam

• As already mentioned in the first lecture,

– The midterm exam is postponed during online lecture period.

– It may be canceled if the online lecture period is quite longer.

• It seems unsafe to take an offline exam at this point.

• I'll tell you whether to postpone or cancel the exam in

the next lecture.

Today's topics

• Class and Instance

• Class access control

• Member functions

• Constructor, Destructor

• this pointer

• Struct in C vs. Struct in C++, Struct vs. Class in

C++

Class

• A class is a user-defined data type,

– which holds its own member variables and member functions.

– These members can be accessed by creating an instance of that class.

• C++ classes are similar to C structs,

– except member functions and other small differences.

class ClassName

{

accessSpecifier:

memberVariables;

...

MemberFunctions() {...}

...

...

};

class Point

{

private:

int x;

int y;

public:

void setXY(int a, int b) {x=a; y=b;}

};

typedef struct _Point

{

int x;

int y;

} Point;

Class vs. Instance / Object

● Class - type vs. Instance (or Object) - variable

● Analogous to bread pan vs. bread.

● Instantiation : creation of an instance / object of the class.

○ Instances have allocated memory to store specific data.

○ There can be multiple identical instances of the same class type, but

there cannot exist identical classes.

class Point

{

private:

int x;

int y;

public:

void setXY(int a, int b)

{x=a; y=b;}

};

int main(void)

{

Point P1;

P1.setXY(3, 4);

return 0;

}

class

instance

Class definition

member functions of the class (data hiding)

variables

Class access control

• Classes can have members with different access control.

– The members are either public, private, or protected (access
specifiers).

– public members are accessible from anywhere.

– private members are only accessible by its member functions.

– protected members are accessible by its member functions and its
derived classes' member functions - will be covered in a later lecture
(8-Inheritance).

• Any member encountered after a specifier will have the
associated access until another specifier is encountered.

class Point {

private:

int x;

int y;

...

public:

void setXY(int a, int b) {x=a; y=b;}

...

};

public members

private members

Class access control

• If member variables are private, they are not

accessible outside of the class. They need public

access functions.

class Point {

private:

int x;

int y;

public:

void setXY(int a, int b) {x=a; y=b;}

};

int main(void){

Point P1;

P1.x = 3; // compile error!

P1.setXY(3, 4);

return 0;

}

Class access control : Stock example

class Student {

private:

string name_, id_, grade_;

int midterm_, final_, hw1_, hw2_;

public:

void SetInfo(string name, string id) { name_ = name, id_ = id; }

void SetScores(int midterm, int final, int hw1, int hw2) {

midterm_ = midterm, final_ = final, hw1_ = hw1, hw2_ = hw2;

}

void ProcessGrade() { ... }

string GetGrade() { return grade_; }

};

int main() {

Student a_student;

a_student.SetInfo("gdhong", "13001");

a_student.SetScores(99, 90, 85, 100);

a_student.ProcessGrade(); // Call the member function ProcessGrade.

a_student.grade_ = "D-"; // Compile error!

string grade = a_student.GetGrade(); // Fine.

...

}

Class access control : Student example

Member function

● A classe can have member functions which work on the member variables

of the class.

○ Member functions are declared in the class definition.

○ Member functions are defined either in the class definition (in header

files) or outside of the class definition (usually in source files).

○ Member functions are accessed by using . operator, like member varia

bles.

Member function definition in the class

definition : Student example

// student.h

class Student {

private:

string name_, id_, grade_;

int midterm_, final_, hw1_, hw2_;

public:

void SetInfo(string name, string id)

{ name_ = name, id_ = id; }

void SetScores(int midterm, int final, int hw1, int hw2)

{

midterm_ = midterm, final_ = final, hw1_ = hw1, hw2_ = hw2;

}

string GetGrade() { return grade_; }

};

Member function definition outside of the

class definition : Student example
// student.h

class Student {

private:

string name_, id_, grade_;

int midterm_, final_, hw1_, hw2_;

public:

void SetInfo(string name, string id);

void SetScores(int midterm, int final, int hw1, int hw2);

string GetGrade();

};

// student.cpp

#include "student.h"

void Student::SetInfo(string name, string id)

{ name_ = name, id_ = id; }

void Student::SetScores(int midterm, int final, int hw1, int hw2)

{

midterm_ = midterm, final_ = final, hw1_ = hw1, hw2_ = hw2;

}

string Student::GetGrade()

{ return grade_; }

Member function: Scope resolution operator (::)

● :: is used to specify the namespace or the class membership.

● A::B means B is in a namespace/class A.

● ::B means B belongs the global namespace (most C library).

#include <math.h>

namespace my_namespace {

class MyClass {

void FunctionA(int i);

// ...

};

void MyClass::FunctionA(int i) { /* ... */ }

void FunctionB(double v, MyClass* a) { /* ... */ }

} // namespace my_namespace

int main() {

my_namespace::MyClass a;

my_namespace::FunctionB(1.25, &a);

double v = ::cos(0.0);

return 0;

}

Member function: Stock example

stock.cpp

stock.h

Member function: Stock example

stock.cpp

stock.h

Quiz #1

• Go to https://www.slido.com/

• Join #csd-hyu

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked as "attendance".

https://www.slido.com/

Inline member functions

● To make a member function inline, you can define a member function in

the class definition (in header file)

● Or you can define a member function outside the class definition (in heade

r file) and use the inline qualifier

● Functions defined in source files cannot be inlined.

Inline member functions

• Question: Can I define a non-inline member function in a header file

(outside the class definition)?

– Let's say main.cpp and test.cpp include one of the following header files:

#include <string>

class Student {

private:

std::string name_;

public:

std::string getName();

};

std::string Student::getName()

{

return name_;

}

#include <string>

class Student {

private:

std::string name_;

public:

std::string getName();

};

inline std::string Student::getName()

{

return name_;

}

link error: multiple definition of

Student::getName()

Ok

→ Functions defined in a header file must be inline,

otherwise you'll get multiple definitions error.

Class vs. Instance : Stock example 1

Stock apple;

apple.acquire(“Apple”, 100, 63);

Stock dell;

dell.acquire(“Dell”, 120, 30);

Apple

100

63

6300

Dell

120

30

3600

apple.show(); dell.show();

Class vs. Instance : Stock example 2

Constructor

class Student {

public:

string name_, id_, grade_;

...

public:

Student() { name_="noname"; id_="noid"; }

...

};

int main()

{

Student st; // Student::Student() is called!

cout << st.name_ << endl;

}

● Constructors are special member functions that initialize the

object and is called when the object is created.

● They have the same name as the class and no return type.

● They are automatically called when the object of its class type is

declared.

Constructor Overloading

class Student {

public:

string name_, id_, grade_;

...

public:

Student() { name_="noname"; id_="noid"; }

Student(string name, string id) { name_=name; id_=id; }

...

};

int main()

{

Student st1; // Student::Student() is called!

Student st2("Tom", "2016123456“); // Student::Student(string,

string) is called!

}

● A class can have multiple constructors.

Default constructor

● A default constructor is a constructor which is called with no

argument.

● Member variables that are not initialized in a constructor...
● remain uninitialized (for primitive types such as int)

● or initialized by calling their classes’ default constructor (for class types)

class Student {

public:

string name_, id_, grade_;

int midterm_, final_, hw1_, hw2_;

...

public:

Student() // default constructor

{ name_="noname"; id_="noid"; }

Student(string name, string id) // this is not a default constructor

{ name_=name; id_=id; }

// member variables other than name_ & id_ remain...

// uninitialized (for primitive types, e.g., midterm_)

// or initialized by their classes’ default constructor (for class type,

e.g., grade_ will be initialized by calling std::string::string())

...

};

Default constructor

● A default constructor is implicitly created by

compiler if there is no user-defined constructor.

class Stock

{

public:

string company;

long shares;

double share_val;

};

int main()

{

Stock stock; // implicitly declared

default constructor is called!

cout << stock.company << endl;

cout << stock.shares << endl;

cout << stock.share_val << endl;

return 0;

}

class Stock

{

public:

string company;

long shares;

double share_val;

Stock(const string& co, long n, double pr)

{}

};

int main()

{

Stock stock; // compile error!

cout << stock.company << endl;

cout << stock.shares << endl;

cout << stock.share_val << endl;

return 0;

}

Constructor : Stock example

stock.cpp

Quiz #2

• Go to https://www.slido.com/

• Join #csd-hyu

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked as "attendance".

https://www.slido.com/

Constructor member initializer list

• Member initializer list is the place where non-default
initialization of member variables can be specified.
● Members of primitive type (such as int) are initialized with

the parameter.

● Members of class type is initialized by calling the proper

constructor taking the parameter.

class Stock

{

public:

string company;

long shares;

double share_val;

Stock(const string& co, long n, double pr)

: company(co), shares(n), share_val(pr)

{}

};

Operator new and class constructor

• T* p = new T;

– If T is a primitive type: Allocates memory space to store

data of type T

– If T is a class: Allocates memory space and initialize it

by calling default constructor of T

• T* p = new T(arguments);

– If T is a primitive type: Allocates memory space and

initialize it with the arguments

– If T is a class: Allocates memory space and initialize it

by calling the proper constructor that takes argument

#include <iostream>

#include <string>

using namespace std;

class Stock

{

public:

string company;

long shares;

double share_val;

Stock() { cout << "Stock::Stock()" << endl; }

Stock(const string& co, long n, double pr)

: company(co), shares(n), share_val(pr)

{ cout << "Stock::Stock(const string&, long, double)" << endl; }

};

int main()

{

int* i1 = new int;

int* i2 = new int(10);

Stock* s1 = new Stock;

Stock* s2 = new Stock("Apple", 10, 125.0);

delete i1;

delete i2;

delete s1;

delete s2;

return 0;

}

Destructor

● A destructor is a special member function for clean-up that is called whe

n the object is destructed.

● Its name is '~' + the class name.

● It has no arguments and no return type.

Destructor example

(Focus on ~DoubleArray() destructor!)

class DoubleArray {

public:

DoubleArray() : ptr_(NULL), size_(0) {}

DoubleArray(size_t size) : ptr_(NULL), size_(0) { Resize(size); }

~DoubleArray() { if (ptr_) delete[] ptr_; }

void Resize(size_t size);

int size() const { return size_; }

double* ptr() { return ptr_; }

const double* ptr() const { return ptr_; }

private:

double* ptr_;

size_t size_; // size_t is unsigned int.

};

void DoubleArray::Resize(size_t size) {

double* new_ptr = new double[size];

if (ptr_) {

for (int i = 0; i < size_ && i < size; ++i) new_ptr[i] = ptr_[i];

delete[] ptr_;

}

ptr_ = new_ptr;

size_ = size;

}

Stock class example

Stock class example

Stock class example

Quiz #3

• Go to https://www.slido.com/

• Join #csd-hyu

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked as "attendance".

https://www.slido.com/

this pointer

● Every object in C++ has access to its own address through a pointer called

this pointer.

● this pointer points to the object used to invoke a member function or acces

s to a member variable (passed as a hidden argument to the function).

=

this pointer – returning self reference

Stock apple(“Apple”, 100, 63);

Stock dell(“Dell”, 120, 30);

Apple

100

63

6300

Dell

120

30

3600

apple.topval(dell);

Invokes topval() with apple,
so this points to apple:
s is dell, *this is apple

dell.topval(apple);

Invokes topval() with dell,
so this points to dell:
s is apple, *this is dell

this pointer

Member Var. and Parameter Names

• Question: Can member variables and function parameters have the same

name? -> Yes, if you use the “this” pointer.

class Rect

{

public:

int width, height;

Rect():width(1), height(2) {}

void setValues(int width, int y)

{

this->width = width;

height = y;

}

};

int main()

{

Rect rt;

rt.setValues(10, 20);

cout << rt.width << endl; // 10

return 0;

}

class Rect

{

public:

int width, height;

Rect():width(1), height(2) {}

void setValues(int width, int y)

{

width = width;

height = y;

}

};

int main()

{

Rect rt;

rt.setValues(10, 20);

cout << rt.width << endl; // 1 ?

return 0;

}

This is okay.

But it's easy to make mistakes, so I don't

recommend it.

Array of Objects

Struct in C vs. Struct in C++

▪ In C, struct has only member variables, and is usually used with type

def

▪ to avoid using struct keyword when declaring a variable (struct _Point p1;).

▪ In C++, struct has member variables and member functions, and do

es not need typedef.

typedef struct _Point {

int x;

int y;

}Point;

int main(void){

Point P1;

P1.x = 3;

P1.y = 4;

return 0;

}

struct Point {

int x;

int y;

void setXY(int a, int b) {x=a; y=b;}

};

int main(void){

Point P1;

P1.x = 3;

P1.y = 4;

P1.setXY(1, 2);

return 0;

}

C C++

Struct in C vs. Struct in C++

▪ In C, all struct member variables are public (can be accessed from an

ywhere).

▪ In C++, struct members can be one of public, private, or protected (t

he default is public).

typedef struct _Point {

int x;

int y;

}Point;

int main(void){

Point P1;

P1.x = 3;

P1.y = 4;

return 0;

}

struct Point {

int x;

int y;

};

int main(void){

Point P1;

P1.x = 3;

P1.y = 4;

return 0;

}

C C++

struct Point {

public:

int x;

int y;

};

int main(void){

Point P1;

P1.x = 3;

P1.y = 4;

return 0;

}

C++

==

Struct in C vs. Struct in C++

▪ In C++, struct members can be one of public, private, or protected (t

he default is public).

▪ If members are private, they are not accessible outside of the class. They

need public access functions.

struct Point {

private:

int x;

int y;

};

int main(void){

Point P1;

P1.x = 3; // compile error!

P1.y = 4; // compile error!

return 0;

}

struct Point {

private:

int x;

int y;

public:

void setXY(int a, int b)

{x=a; y=b;}

};

int main(void){

Point P1;

P1.setXY(3, 4);

return 0;

}

Struct vs. Class in C++

● In C++, struct and class are almost the same.

● The only difference is default accessibility of members:

● In struct, public is default

● In class, private is default

class Point {

int x;

int y;

public:

void setXY(int a, int b) {x=a; y=b;}

};

int main(void){

Point P1;

P1.setXY(3, 4);

return 0;

}

struct Point {

private:

int x;

int y;

public:

void setXY(int a, int b) {x=a; y=b;}

};

int main(void){

Point P1;

P1.setXY(3, 4);

return 0;

}

=

Next Time

• Labs in this week:

– Lab1: Assignment 5-1

– Lab2: Assignment 6-1

• Next lecture:

– 7 - Standard Template Library

