Creative Software Design

6 — Class

Yoonsang Lee
Fall 2020

Midterm Exam

* As already mentioned In the first lecture,
— The midterm exam is postponed during online lecture period.
— It may be canceled if the online lecture period is quite longer.

* |t seems unsafe to take an offline exam at this point.

 I'll tell you whether to postpone or cancel the exam in
the next lecture.

Today's topics

 Class and Instance
 Class access control

* Member functions
 Constructor, Destructor
* this pointer

e Struct in C vs. Struct in C++, Struct vs. Class in
C++

Class

A class is a user-defined data type,

— which holds its own member variables and member functions.
— These members can be accessed by creating an instance of that class.

class ClassName

{
accessSpecifier:
memberVariables;

MemberFunctions () {...}

}s

class Point
{
private:
int x;
int y;
public:
void setXY (int a, int b) {x=a;

}s

y=b;}

C++ classes are similar to C structs,
— except member functions and other small differences.

typedef struct Point
{

int x;

int vy;
} Point;

Class vs. Instance / Object

class Point

e Class - type vs. Instance (or Object) - variable { Y
private: ClaSS
int x;
e Analogous to bread pan vs. bread. prien
void setXY (int a, int b)
{x=a; y=b;}

b

int main (void)]

{ « Instance
Point P1;
Pl.setXY (3, 4);
return O;

}

e Instantiation : creation of an instance / object of the class.
o Instances have allocated memory to store specific data.

o There can be multiple identical instances of the same class type, but
there cannot exist identical classes.

Class definition

keywordlprivate identifies class members
that can be accessed only through the member functions of the class (data hiding)

!(eyW'O}'d class the class name becomes the
identifies - name of this user-defined type class members can be
class definition variables or functions

Y A\
class Stock
{
> private:
char company[30];
int shares; -
double share val,;
double total val,;
void set _tot() { total val = shares * share val; }
> public:
void acquire(const char * co, int n, double pr);
void buy(int num, double price);
void sell(int num, double price);
void update(double price);
void show();

};

keywordl public]identifies class members
that constitute the public interface for
the class (abstraction)

Class access control

» Classes can have members with different access control.
— The members are either public, private, or protected (access
specifiers).
— public members are accessible from anywhere.
— private members are only accessible by its member functions.

— protected members are accessible by its member functions and its
derived classes' member functions - will be covered in a later lecture
(8-Inheritance).

* Any member encountered after a specifier will have the
associated access until another specifier is encountered.

class Point {
private:
int x;
private members {int y;
public:
pubHcrnenwbers-{:VOid setXY (int a, int b) {x=a; y=b;}

}s

Class access control

 |f member variables are private, they are not
accessible outside of the class. They need public

access functions.

class Point {
private:
int x;
int y;
public:
void setXY (int a, 1int b) {x=a; y=b;}
} i
int main (void) {
Point P1;
Pl.x = 3; // compile error!
Pl.setXY (3, 4);
return O;

}

Class access control : Stock example

class Stock // class declaration
{
private:

std::string company;

long shares;

double share val;

double total val;

void set tot() { total val = shares * share val; }
public:

void acquire(const std::string & co, long n, double pr);

void buy(long num, double price);

void sell (long num, double price);

void update (double price);

void show();

}i // note semicolon at the end

Class access control : Student example

class Student {
private:
string name , id , grade ;
int midterm , final , hwl , hw2 ;

public:
void SetInfo(string name, string id) { name = name, id = id; }
void SetScores (int midterm, int final, int hwl, int hw2) {
midterm = midterm, final = final, hwl = hwl, hw2 = hwZ;
}
void ProcessGrade() { ... }
string GetGrade() { return grade ; }
i
int main() {
Student a student;
a_student.SetInfo ("gdhong", "13001");
a_student.SetScores (99, 90, 85, 100);
a_student.ProcessGrade(); // Call the member function ProcessGrade.

a student.grade = "D-"; // Compile error!
string grade = a student.GetGrade(); // Fine.

Member function

e A classe can have member functions which work on the member variables
of the class.

O

O

Member functions are declared in the class definition.

Member functions are defined either in the class definition (in header
files) or outside of the class definition (usually in source files).

Member functions are accessed by using . operator, like member varia
bles.

Member function definition In the class
definition : Student example

// student.h

class Student {

private:
string name , 1d , grade ;
int midterm , final , hwl , hw2 ;

public:
void SetInfo(string name, string id)
{ name = name, id = 1d; }

void SetScores (int midterm, int final, int hwl, int hw?2)

{

midterm = midterm, final = final, hwl = hwl, hw2 = hw2;

}

string GetGrade () { return grade ; }

b

Member function definition outside of the
class definition : Student example

// student.h
class Student {
private:
string name , id , grade ;
int midterm , final , hwl , hw2 ;
public:
void SetInfo(string name, string id);
void SetScores (int midterm, int final, int hwl, int hw2);
string GetGrade () ;

b

// student.cpp
#include "student.h"

void Student::SetInfo(string name, string id)
{ name = name, id = id; }

vold Student::SetScores (int midterm, int final, int hwl, int hw2)

{

midterm = midterm, final = final, hwl = hwl, hw2 = hw2;

}

string Student: :GetGrade ()
{ return grade ; }

Member function: Scope resolution operator (::)

e ::is used to specify the namespace or the class membership.
e A::B means B is in a namespace/class A.

e ::B means B belongs the global namespace (most C library).

#include <math.h>
namespace my namespace {

class MyClass {
void FunctionA (int 1i);

// ...
}i
void MyClass: :FunctionA(int 1) { /* ... */ }
void FunctionB (double v, MyClass* a) { /* ... */ }

} // namespace my namespace

int main () {
my namespace::MyClass a;
my namespace: :FunctionB(1.25, &a);
double v = ::co0s(0.0);
return 0;

Member function: Stock example

stock.cpp

void Stock::acquire(const std::string & co, long n, double pr)
{
company = Co;
if (n < 0)
{
std::cout << "Number of shares can’t be negative; "

<< company << " shares set to 0.\n";

shares = 0;
else stock.h
shares = I; class Stock // class declaration
share val = pr; (
- private:
SEt_tOt '{ :l H std::string company;
} long shares;

double share_val;

double total_val;

void set_tot() { total val = shares * share val; }
public:

void acquire (const std::string & co, long n, double pr);

void buy(leong num, double price);

void sell(long num, double price);

void update (double price);

void show () ;

}i // note semicolon at the end

Member function: Stock example

stock.cpp

void Stock::sell(long num, double price)
using std::cout;
if (num < 0)
cout << "Number of shares sold can’t be negative.
<< "Transaction is aborted.\n";

}

else if (num > shares)

{

cout << "You can’t sell more than you have! "

n

stock.h

<< "Transaction 1is aborted.\n"; class Stock // class declaration
} {
private:
else std::string company;
long shares;
{ double share_val;
shares -= num; dqutmmkyﬂ;
void set_tot() { total val = shares * share val; }
share val = price; public:
void acquire (const std::string & co, long n, double pr);
Set_tOt () i void buy(leong num, double price);
} void sell(long num, double price);
void update (double price);
} void show () ;

/1

note semicolon at the end

Quiz #1

* Go to https://www.slido.com/
* Join #csd-hyu
* Click "Polls"

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked as "attendance".

https://www.slido.com/

Inline member functions

To make a member function inline, you can define a member function in
the class definition (in header file)

Or you can define a member function outside the class definition (in heade
r file) and use the inline qualifier

Functions defined in source files cannot be inlined.

class Stock { class Stock {
private: private:

void set_tot(){ void set_tot();

total_val = shares * share_val; public:

3
public: 35
}; o inline void Stock::set_tot(){

total_val = shares * share_val;
}

Inline member functions

* Question: Can | define a non-inline member function in a header file

(outside the class definition)?

— Let's say main.cpp and test.cpp include one of the following header files:

#include <string>

class Student {
private:

std::string name ;
public:

std::string getName () ;
};

std: :string Student: :getName ()
{

return name ;

}

link error: multiple definition of
Student::getName()

#include <string>

class Student {
private:

std::string name ;
public:

std::string getName () ;
}i

inline std::string Student::getName ()
{

return name ;

}

Ok

— Functions defined in a header file must be inline,
otherwise you'll get multiple definitions error.

Class vs. Instance : Stock example 1

Stock apple;
apple.acquire("Apple”, 100, 63);
Stock dell;

dell.acquire(“Dell”, 120, 30);

Dell
Apple creates two objects,
100 «<—each withitsown —> 120
data, but uses just
63 one set of member 30
functions
6300 3600
void Stock::show(void)
{
cout << "Company: " << company ...
} N

/ show() member function \

apple.show(); dell.show();

Class vs. Instance : Stock example 2

int main() {

Stock apple;
apple.acquire("Apple”, 20, 12.50);
apple.show();
apple.buy(1l5, 18.125);
apple.show();
apple.sell(400, 20.00);
apple.show();
apple.buy(300000, 40.125);
apple.show();
apple.sell(300000, 0.125);
apple.show();

return 0;

Constructor

e Constructors are special member functions that initialize the
object and is called when the object is created.

e They have the same name as the class and no return type.

e They are automatically called when the object of its class type is
declared.

class Student {

public:
string name , 1id , grade ;
public:
Student () { name ="noname"; id ="noid"; }

b

int main ()

{
Student st; // Student::Student() is called!

cout << st.name << endl;

}

Constructor Overloading

e A class can have multiple constructors.

class Student {
public:
string name , 1d , grade ;

public:
Student () { name_="noname"; id ="noid"; }
Student (string name, string id) { name_ =name; id =id; }

Y

int main ()

{
Student stl; // Student::Student() is called!

Student st2("Tom", "2016123456“); // Student::Student(string,

string) is called!
}

Default constructor

e A default constructor is a constructor which is called with no
argument.

e Member variables that are not initialized in a constructor...
e remain uninitialized (for primitive types such as int)
e or initialized by calling their classes’ default constructor (for class types)

class Student {

public:
string name , id , grade ;
int midterm , final , hwl , hw2 ;
public:
Student () // default constructor
{ name ="noname"; id ="noid"; }

Student (string name, string id) // this is not a default constructor
{ name =name; id =id; }

// member wvariables other than name & id_ remain...

// uninitialized (for primitive types, e.g., midterm)

// or initialized by their classes’ default constructor (for class type,
e.g., grade_ will be initialized by calling std::string::string())

b

Default constructor

e A default constructor is implicitly created by
compiler if there Is no user-defined constructor.

class Stock

{

public:
string company;
long shares;
double share val;

}s

int main ()
{

Stock stock; // implicitly declared
default constructor is called!

cout << stock.company << endl;
cout << stock.shares << endl;
cout << stock.share val << endl;
return O;

class Stock

{
public:

string company;

long shares;

double share val;

Stock (const string& co, long n, double pr)

{1}
b

int main ()

{
Stock stock;

cout << stock.
cout << stock.
cout << stock.
return 0;

// compile error!

company << endl;
shares << endl;
share val << endl;

Constructor : Stock example

stock.cpp

Stock::Stock (const string & co, long n, double pr)

{

company = co;

if (n < 0)

{

std::cerr << "Number of shares can’t be negative;
<< company << " shares set to 0.\n";

shares 0;

}

else

shares = n;
share val = pr;
set tot();

Quiz #2

* Go to https://www.slido.com/
* Join #csd-hyu
* Click "Polls"

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked as "attendance".

https://www.slido.com/

Constructor member initializer list

« Member initializer list Is the place where non-default

Initialization of member variables can be specified.
e Members of primitive type (such as int) are initialized with
the parameter.
e Members of class type is initialized by calling the proper
constructor taking the parameter.

class Stock

{

public:
string company;
long shares;
double share val;

Stock (const string& co, long n, double pr)
: company (co), shares(n), share val (pr)

{}

Operator new and class constructor

e T*p=newT;
— If T Is a primitive type: Allocates memory space to store
data of type T

— If T 1s a class: Allocates memory space and initialize it
by calling default constructor of T

e T*p =new T(arguments);
— If T Is a primitive type: Allocates memory space and
Initialize it with the arguments

— If T is a class: Allocates memory space and initialize it
by calling the proper constructor that takes argument

#include <iostream>
#include <string>
using namespace std;

class Stock

{

public:
string company;
long shares;
double share val;

Stock () { cout << "Stock::Stock ()" << endl;

Stock (const string& co, long n, double pr)
company (co), shares(n), share val (pr)
{ cout << "Stock::Stock(const string&, long,

}i

int main ()

{

int* il new int;
int* i2 = new int(10) ;

Stock* sl new Stock;
Stock* s2 = new Stock("Apple", 10, 125.0);

delete 1i1;
delete 12;
delete sl1;
delete s2;

return 0;

}

double) "

<< endl;

}

Destructor

e A destructor is a special member function for clean-up that is called whe
n the object is destructed.

Its name Is '~' + the class name.

It has no arguments and no return type.

Stock: :~Stock ()
{
}

Stock: :~Stock () // class destructor

{
)

cout << "Bye, " << company << "i\n";

Destructor example
(Focus on ~DoubleArray() destructor!)

class DoubleArray {

public:
DoubleArray () : ptr (NULL), size (0) {}
DoubleArray(size_t size) : ptr (NULL), size (0) { Resize(size); }

~DoubleArray () { if (ptr) delete[] ptr ; }

void Resize (size_t size);

int size() const { return size ; }

double* ptr () { return ptr ; }

const double* ptr() const { return ptr ; }
private:

double* ptr ;
size t size ; // size_t is unsigned int.

) §

void DoubleArray::Resize (size_t size)

double* new ptr = new double[size];

if (ptr_) f{
for (int i = 0; 1 < size && 1 < size; ++1i) new ptr[i] = ptr [i];
delete[] ptr ;

}

ptr = new ptr;

size = size;

}

Stock class example

Listing 10.4 stockl1l0.h

// stockl0.h -- Stock class declaration with constructors, destructor added
#ifndef STOCK10 H

#define STOCKOl H

#include <strings

class Stock
{
private:
std: :string company;
long shares;
double share val;
double total val;
void set tot() { total val = shares * share val; }
public:
// two constructors
Stock () ; // default constructor
Stock (const std::string & co, long n = 0, double pr = 0.0);
~Stock () ; // noisy destructor
void buy(long num, double price);
void sell (long num, double price);
void update(double price);
void show() ;

}i

#endif

Stock class example

Listing 10.5 stockl0.cpp

// stocklO.cpp -- Stock class with constructors, destructor added
#include <icstreams>
#include "stockl0.h"

// constructors (verbose versions)
Stock: :Stock () // default constructor
{
std::cout << "Default constructor called\n";
company = "no name";
shares = 0;
share val = 0.0;
total_val = 0.0;

Stock::Stock(const std::string & co, long n, double pr)

{
std::cout << "Constructor using " << co << " called\n";
company = co;

if (n < 0)
{
std::cout << "Number of shares can’t be negative; "
<< company << " shares set to 0.\n";
shares = 0;
}
else
shares = n;
share_val = pr;
set_tot();
}
// class destructor
Stock: :~Stock () // verbose class destructor

{

std::cout << "Bye, " << company << "!\n";

Stock class example

Listing 10.6 usestokl.cpp

// usestokl.cpp -- using the Stock class
// compile with stockl0.cpp

#include <iostream>

#include "stockl0.h"

int main()

{
{
using std::cout;
cout << "Using constructors to create new objects\n";
Stock stockl("NanoSmart", 12, 20.0); // syntax 1
stockl.show() ;
Stock stock2 = Stock ("Boffo Objects", 2, 2.0); // syntax 2
stock2.show() ;

cout << "Assigning stockl to stock2:\n";
stock2 = stockl;

cout << "Listing stockl and stock2:\n";
stockl.show() ;

stock2.show() ;

cout << "Using a constructor to reset an object\n";

stockl = Stock("Nifty Foods", 10, 50.0); // temp object
cout << "Revised stockl:\n";

stockl.show() ;

cout << "Done\n";

return 0;

Quiz #3

* Go to https://www.slido.com/
* Join #csd-hyu
* Click "Polls"

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked as "attendance".

https://www.slido.com/

this pointer

e Every object in C++ has access to its own address through a pointer called

this pointer.
e this pointer points to the object used to invoke a member function or acces
s to a member variable (passed as a hidden argument to the function).

class Rectagle { class Rectagle {
private: private:
int width, height; int width, height;
public: public:
void setValues(int x, int y) { |- void setValues(int x, int y) {
width = Xxj this->width = x;
height = y; this->height = y;
} }
}; },

this pointer — returning self reference

Stock apple("Apple”, 100, 63);
Stock dell("Dell”, 120, 30);

App|e Dell
100 creates two objects — 120
63 30
6300 3600
const Stock & Stock::topval(const Stock & s) const
{
if (s.total_val > total_val)
return s;
else
return *this,
}
] topval () member function]
this this
apple.topval(dell); dell.topval(apple);
Invokes topval() with apple, Invokes topval() with dell,
so this points to apple: so this points to dell:

s is dell, *this is apple s is apple, *this is dell

this pointer

Stock & Stock::topval(Stock & s)
{
if (s.total_val > total_val)

N

s.total val refers total_val refers
to jinx.total_val to nero.total_val

/
nero.topval(jinx);

T T

accessed implicitly because accessed explicitly because
this object invokes the class this object is passed as a
member function function argument

Member Var. and Parameter Names

* Question: Can member variables and function parameters have the same
name? -> Yes, if you use the “this” pointer.

class Rect class Rect
{ {
public: public:
int width, height; int width, height;
Rect () :width (1), height(2) {} Rect () :width (1), height(2) {}
void setValues (int width, int y) void setValues (int width, int vy)
{ {
this->width = width; width = width;
height = y; height = vy;
} }
}; }s;
int main () int main ()
{ {
Rect rt; Rect rt;
rt.setValues (10,) rt.setValues (10,) ;
cout << rt.width << endl; // 10 cout << rt.width << endl; // 1 ?
return 0; return 0;
} }
This is okay.

But it's easy to make mistakes, so | don't
recommend it.

Array of Objects

int mainf()

{

// create an array of initialized objects

Stock stocks[STKS] = {

Stock ("NanoSmart", 12, 20.0),
Stock ("Boffo Objects", 200, 2.0),
Stock ("Monolithic Obelisks", 130, 3.25),
Stock ("Fleep Enterprises", 60, 6.5)

}i

std::cout << "Stock holdings:\n";

int st;

for (st = 0; st < STKS; st++)
stocks [st] .show() ;

// set pointer to first element

const Stock * top = &stocks[0];

for (st = 1; st < STKS; st++)
top = &top->topval (stocks([st]);

// now top points to the most waluable holding
std::cout << "\nMost valuable holding:\n";
top->show() ;

return 0;

Stock holdings:
Company: NancSmart Shares: 12

Share Price: $20.000 Total Worth: $240.00
Company: Boffo Objects Shares: 200

Share Price: $2.000 Total Worth: $400.00
Company: Monolithic Obelisks Shares: 130

Share Price: $3.250 Total Worth: $422.50
Company: Fleep Enterprises Shares: 60

Share Price: $6.500 Total Worth: $390.00

Most wvaluable helding:
Company: Monolithic Obelisks Shares: 130
Share Price: $3.250 Total Worth: $422.50

Struct in C vs. Struct in C++

In C, struct has only member variables, and is usually used with type
def

» toavoid using struct keyword when declaring a variable (struct Point pl;).

In C++, struct has member variables and member functions, and do
es not need typedef.

typedef struct Point { struct Point ({

int x; LR 5
int y; B &
}Point; void setXY (int a, int b) {x=a; y=b;}

b g

int main (void) {) : .
int main (void) {

Point P1;

Pl = 3; P01nt_P1;
Pl.y= 4,' Pi'x: Zr
return 0; BLoy = 47

Pl.setXY (1, 2);
return 0O;

C C++

Struct in C vs. Struct in C++

= InC,all struct member variables are public (can be accessed from an
ywhere).

= InC++, struct members can be one of public, private, or protected (t
he default is public).

typedef struct Point ({ struct Point { struct Point {
int x; int x; public:
int y; int y; int x;
}Point; }s int y;
}:
int main (void) { int main (void) {
= = int main (void) {
Point P1; Point P1;
Pl.x = 3; Pl.x = 3 Point P1;
Pl.y = 4; Pl.y = 4; Pl.x = 3
return 0; return O Pl.y = 4;
} } return 0

}

C C++ C++

Struct in C vs. Struct in C++

In C++, struct members can be one of public, private, or protected (t
he default is public).

If members are private, they are not accessible outside of the class. They
need public access functions.

struct Point { struct Point {
private: private:

int x; int x;

int y; int y;
}i public:

void setXY (int a, int b)
int main (void) { {x=a; y=Db;}
}i

Point P1;

Pl.x = 3; // compile error! int main (void) {

Pl.y = 4; // compile error!

return 0; Point P1;
} Pl.setXY (3, 4);

return 0;

}

Struct vs. Class in C++

e [nC++, struct and class are almost the same.

e The only difference is default accessibility of members:
e Instruct, publicis default

e Inclass, private is default

struct Point { class Point {

private: int x;
int x; int y;
int vy; public:

public: void setXY (int a, int b) {x=a; y=b;}
void setXY (int a, int b) {x=a; y=b;} — };

b g

int main (void) {
int main (void) {

Point P1;
Point P1; Pl.setXY (3, 4);
Pl.setXY (3, 4); return 0;

return 0; }

}

Next Time

 Labs In this week:
— Labl: Assignment 5-1
— Lab2: Assignment 6-1

* Next lecture:
— 7 - Standard Template Library

