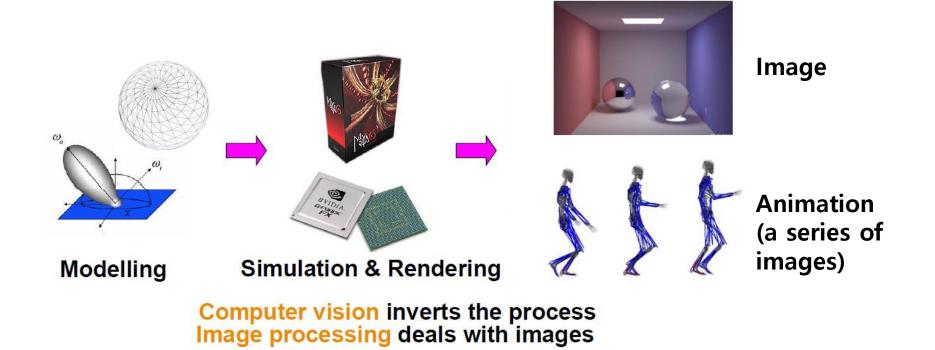
Computer Graphics

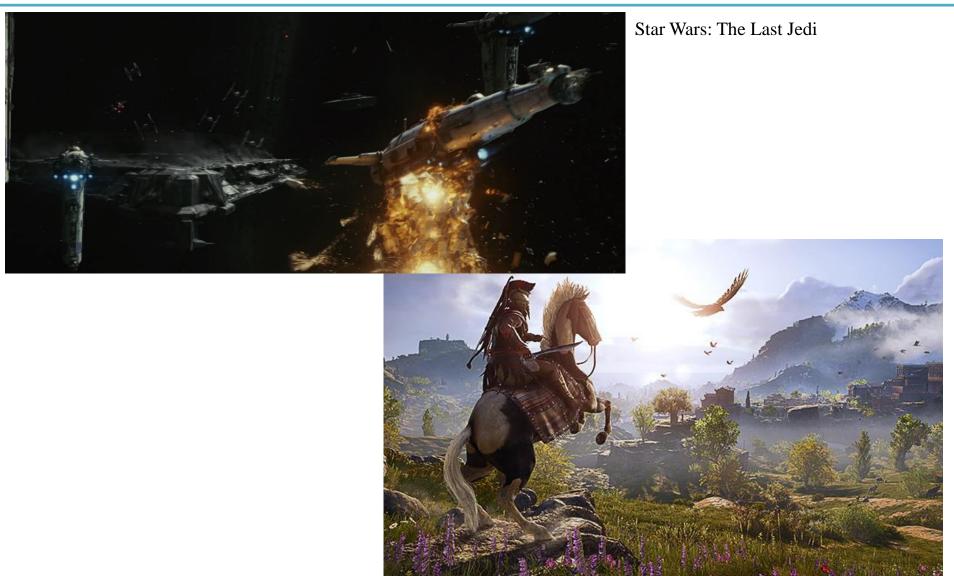
1 - Course Intro

Yoonsang Lee Spring 2020

Course Information


- Instructor: Yoonsang Lee (이윤상)
 - yoonsanglee@hanyang.ac.kr
- TA: Geuntae Park (박근태)
 - qkrrmsxo01@hanyang.ac.kr
- Course Hompage
 - The Blackboard course homepage at portal.hanyang.ac.kr (or learn.hanyang.ac.kr)
 - Slides will be uploaded to **Course Content**(코스 콘텐츠) **Lecture Slides**(**강의자료**) as soon as it is ready, but they may be updated just before the lecture.
 - Therefore, please download lecture slides again at the beginning of each lecture.

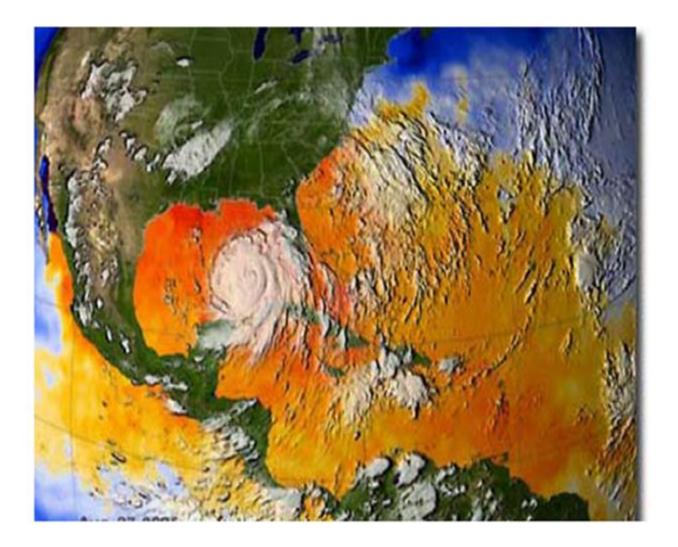
Real-time Video Lecture Policy


- This semester's lectures and labs will be given in online until further announcement.
- We use the "real-time video lectures" to minimize the difference from offline lectures.
- All students are required to join "Lecture Session" and "Lab Session" on time.
- Question policy:
 - "Lecture Session": Questions are available on another site (slido.com, which will be explained in the later slide).
 - "Lab Session": Click "raise hand" (at the bottom of the session screen) to indicate that you have a question. The TA or undergraduate mentor will talk to you in 1:1 chat in order.
- Attendance check
- Lecture session
 - Online quiz submission (using slido.com, which will be explained in the later slide)
 - Session participation records
- Lab session
 - Late: 10 minutes after session start
 - Absence: 20 minutes after session start
 - Minimum session participating time for attendance: 20% of session duration
- Common for Lecture & Lab
 - 3 lates are regarded as 1 absence.

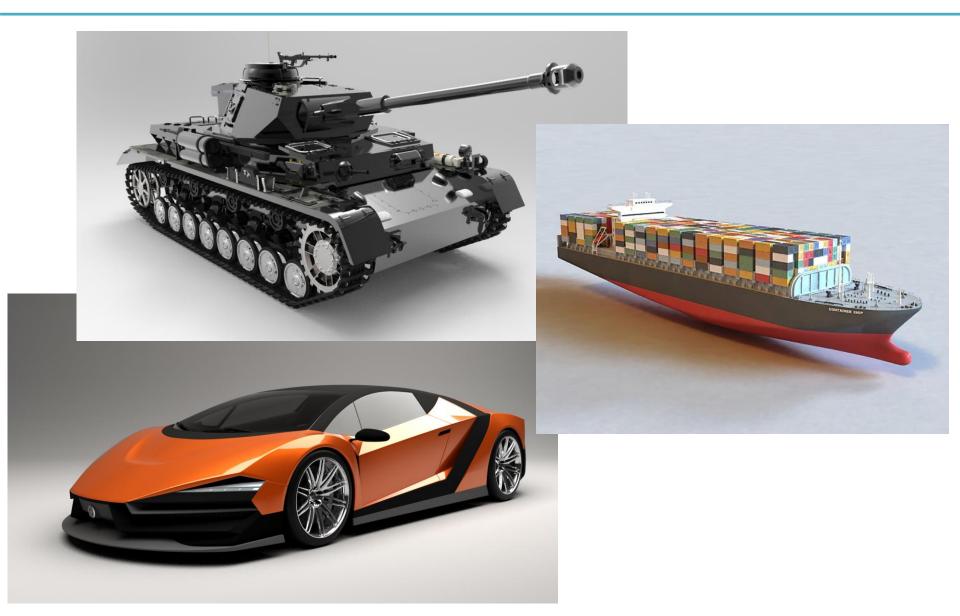
What is Computer Graphics?

• The study of creating, manipulating, and using visual images in the computer.

Movies & Games


Assassin's Creed Odyssey

Science and Engineering


Simulated deformation of citrate synthase during substrate binding

Weather Visualization

LLNL

Computer-Aided Design

Medical Applications

Rapidia homepage

Fine Arts

Cornell CS4620 Fall 2008 • Lecture 1

© 2008 Steve Marschner • 22

Course Overview

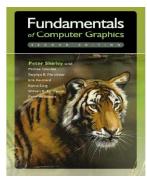
- Computer Graphics: Mathematics made visible
- In this course, you will
 - Explore fundamental computer graphics & mathematics ideas
 - Write cool programs (using Python and legacy OpenGL)
- You will not
 - Learn sophisticated computer graphics techniques
 - Learn about modern OpenGL APIs
 - Write really big programs

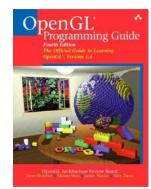
Course Overview

• As "implementation examples" of the fundamental computer graphics ideas, we'll use:

• Legacy OpenGL (mainly)

• On-line WebGL demos (sometimes)


• Blender: open-source 3D graphics tool (sometimes)


Prerequisites

- Basic knowledge of mathematics
 - E.g., vector geometry, linear algebra
- Basic knowledge of programming skill
 We'll use Python in this class.
- You don't need artistic sense!
- If you are unsure, consult the instructor at the end of this class.

Textbook & References

- Textbook : Lecture slides
- References
 - Fundamentals of Computer Graphics
 - 1,2 or 3rd edition
 - Peter Shirley et al.
 - AK Peters
 - OpenGL Programming Guide
 - Version 1.1 is available at internet
 - http://www.glprogramming.com/red/
 - Reference book is also available
 - http://www.glprogramming.com/blue
 - (I don't think you need to buy these books)

Schedule (subject to change)

Week	Торіс	Mon	Wed
1	1 - Course Intro / Lab1 - Environment Setting	3/16	3/18
2	2 - Introduction to NumPy / OpenGL	3/23	3/25
3	3 - Transformation 1	3/30	4/1
4	4 - Transformation 2	4/6	4/8
5	5 - Affine Geometry, Rendering Pipeline	4/13	4/15
6	6 - Viewing, Projection	4/20	4/22
7	7 - Hierarchical Modeling, Mesh	4/27	4/29
8	Midterm Exam		5/6
9	8 - Lighting & Shading	5/11	5/13
10	9 - Orientation & Rotation	5/18	5/20
11	10 - Animation	5/25	5/27
12	11 - Curves	6/1	6/3
13	12 - More Lighting, Texture	6/8	6/10
14	13 - Rasterization & Visibility	6/15	6/17
15	Final Exam	6/22	

Lectures & Labs

• Lecture (Mon) + Lab (Wed)

- Lecture (by instructor)
 - Traditional classroom-based learning.

- Lab (by TA)
 - Time for solving lab assignment problems by yourselves.
 - TA and an undergraduate mentor will help you.

Lab assignments

- 1 lab assignment per each lab session.
 - with 2~3 problems
- The goal is to let you understand what you've just learned in lectures every week.
 - The problems would not be too difficult.
 - TA and the undergraduate mentor will help you to solve the problems as much as possible.
- Due: 23:59 on the day of the lab session.

Class assignments

• 3 class assignments during the semester.

• More challenging programming assignments.

• The due date will be two to three weeks after the assignment is given.

Policy for Assignments

- NO SCORE for late submissions
 - Submit before the deadline!

- NO SCORE for copying
 - If A copies B's code, A and B will get 0 point.
 - If A, B, C copies the same code from the internet, they will all get 0 point.
 - Collaboration encouraged, but assignments must be your own work.

About Laptop

- Lecture
 - The lecture slides contains many Python code.
 - I'd like you to run & test the code during a lecture.
 - So, I recommend you to bring your laptop at lecture time.
- Lab
 - The lab is held in a laptop-only training room.
 - If you want to borrow a laptop, contact the TA by email until the lab in this week.
 - But, I strongly recommend you to bring your laptop at lab sessions.

Grading

Midterm exam	30%
Final exam	30%
Lab assignments	15%
Class assignments	15%
Attendance	5%
Class attitude	5%

- To avoid F, you have to attend at least 9 lectures && 9 labs
- Absences from midterm or final exam -> F

Grading Policy

• Basic principle: Separating the grades where there is a big gap between points.

• Guideline:

А	25%~30%
В	30%~35%
С	40%

Language

- I will mainly use English in classes.
- But the most important goal is improving your understanding, both for English and non-English speakers.
 So, I'll "paraphrase" the explanation in Korean for most slides.
- In lab sessions, TA will try to use English.
 - You can ask TA personally in Korean.
 - Of course, TA will try to give answers in English when asked in English.
- Now, let's take a quick look at prev. slides in Korean.

Questions – Slido.com

• I know very well how uncomfortable it is to ask questions in the middle of class.

• To encourage questions, we'll use an online, anonymous Q&A platform – slido.com

Just Try It!

- Go to <u>https://www.slido.com/</u>
- Join #cg-hyu
- Ask any questions in English!
 - You can use Google Translator if you have difficulty writing in English.

Questions – Slido.com

- In slido.com, you can
 - Ask your own questions anonymously
 - Upvote other questions
- We'll use the slido Q&A only during lecture time.
 - Not after lecture time
 - Not in the lab sessions
 - No written answers
- Please ask questions **anonymously**.
 - Just leave your name blank when post a question.

Quiz & Attendance – Slido.com

- 3 quiz problems per each lecture (using slido.com polls).
- Very simple questions you have to submit in two minutes.

• I'll check attendance using quiz submission.

Quiz & Attendance – Slido.com

- You **MUST** submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2017123456: 4)
- Attendance checking:

Attendance	Number of submissions in the format - 3 times && You are in the classroom (session)
Late	Number of submissions in the format – 1~2 times && You are in the classroom (session)
Absence	Number of submissions in the format – 0 times You are NOT in the classroom (session)

- 3 lates are regarded as 1 absence.

Quiz & Attendance – Slido.com

• If submitting a quiz answer without attending the class (session) is detected,

• I think he or she has been also absent from the previous lecture.

• \rightarrow Check as "Absence" for these two lectures

Just Try a Quiz!

- Go to <u>https://www.slido.com/</u>
- Join #cg-hyu
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2017123456: 4)
- Note that you must submit all quiz answers **in this format** to be checked for "attendance".

Classroom Etiquette

- **DO NOT negatively affect other students** in the classroom. For example,
 - Doing other things (e.g. games) with your laptop
 - Using your phone for a long time
 - Private conversation
 - Sleeping on a desk
- May be reflected in "Class attitude" in your grade

My Recommendation for This Class

- DO NOT recommend to those who...
 - want to easily earn good credits.
 - expect lectures in fluent English.

- Recommend to those who...
 - wonder how movies/games render scenes.
 - are interested in the movement of objects/characters.
 - like visualizing something by coding.
 - have passion for computer graphics!

Lastly...

• If you agree on all these policies, see you this week's lab session!

• If not, please consider taking other classes instead.

Next Time

- Lab in this week:
 - 1-Lab-EnvSetting: Environment settings for lectures & assignments
 - Lab assignment 1
- Next lecture:
 - 2 Introduction to NumPy / OpenGL

- Acknowledgement: Some materials come from the lecture slides of
 - Prof. Taesoo Kwon, Hanyang Univ., <u>http://calab.hanyang.ac.kr/cgi-bin/cg.cgi</u>
 - Prof. Steve Marschner, Cornell Univ., <u>http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml</u>