Spline

- Spline: piecewise polynomial

- Three issues:
- How to connect these pieces continuously?
- How easy is it to "control" the shape of a spline?
- Does a spline have to pass through specific points?

Continuity

- Let's try another Bezier demo: Bezier spline

http://math.hws.edu/graphicsbo ok/demos/c2/cubic-bezier.html
- How to "smooth" the spline?

Continuity

- Smoothness can be described by degree of continuity
- zero-order (C^{0}): position matches from both sides
- first-order $\left(C^{1}\right)$: position and $1^{\text {st }}$ derivative (velocity) match from both sides
- second-order $\left(C^{2}\right)$: position and $1^{\text {st }} \& 2^{\text {nd }}$ derivatives (velocity \& acceleration) match from both sides

Control

- Let's say you want to make a specific shape using these two curves. Which one is more controllable?

Control

- Local control
- changing control point only affects a limited part of spline
- without this, splines are very difficult to use
- many likely formulations lack this
- natural spline
- polynomial fits

Interpolation / Approximation

- Interpolation: passes through points

- Approximation: merely guided by points

- Interpolation properties are preferable, but not mandatory

Catmull-Rom Spline

- A Bezier or Hermite curve interpolates two end points only
- What if we want a cubic spline interpolating all control points?
- Catmull-Rom Splines
- One Hermite curve between two consecutive control points
- Define end point derivatives using adjacent control points

- C^{1} continuity, local controllability, interpolation

Natural Cubic Splines

- We want to achieve higher continuity (at least C^{2})
- $4 n$ unknowns
- n Bezier curve segments (4 control points per each segment)
- $4 n$ equations
- $2 n$ equations for end point interpolation
- ($n-1$) equations for tangential continuity
- ($n-1$) equations for second derivative continuity
- 2 equations: $x^{\prime \prime}\left(t_{0}\right)=x^{\prime \prime}\left(t_{n}\right)=0$

- C^{2} continuity, no local controllability, interpolation

B-splines (brief intro)

- Use 4 points, but approximate only middle two

- \mathbf{p}_{3}
- Draw curve with overlapping segments
- 0-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-6, etc

- C^{2} continuity, local controllability, approximation

