Computer Graphics

13 - Rasterization & Visibility

Yoonsang Lee
Spring 2020

Alternative Assignment to Final Exam

* \We decide to cancel the offline final exam and replace
It with the assignment due to the respread of covid19.

« There may still be students who want to take the final
exams, but this decision is made for the safety of all of
you and your family, so we ask for your
understanding.

* Time:
— 6/20(Sat) 1 pm ~ 6/21(Sun) 1 pm

 Please schedule your time in advance.

Alternative Assignment to Final Exam

* Programming assignment

* \We will copy-check thoroughly. Do not try to cheat.
— If A copies B's code, A and B will get 0 point.

— If A, B, C copies the same code from the internet, they will
all get O point.

» Performing the assignment by proxy (CH 2| 2FA]) is
strictly prohibited.

— If you hear about a proxy assignment case, please email me.

Topics Covered

Two Approaches for Rendering
— Object-oriented (Rasterization)
— Image-oriented (Raytracing)

« Rasterization (in a narrow sense)
— Line / Polygon Drawing

 Visibility Problem
— Clipping (Viewing frustum culling)

— Back-face culling
— Hidden surface removal

» Rendering(Graphics) Pipeline Again

* Course Wrap-up

Recall: Rendering(Graphics) Pipeline

[vertex L fragment
: I—l rasterization I—l : If
processing processing

. performs a . assembles . determines

sequence of vertex polygons & converts color of each _

transformations each polygon into a fragment with {Output merglngJ
set of fragments light & texture

(pixels)

Two Approaches for Rendering - 1

for each object in scene

transform the object to viewport # vertex processing

find pixels for the object # rasterization (in a narrow sense)

set color of the pixels based on texture and lighting
mode 1 # fragment

......- pfOC@SS/hg

(triangle is rendered to screen)

« This is called rendering(graphics) pipeline
 Or rasterization(in a broad sense)

 or object-oriented rendering.

Two Approaches for Rendering - 2

for each pixel in image(film plane)
determine which object should be shown at the pixel
set color of the pixel based on texture and lighting model

N
EEE
EEE
EED
(ray intersection is rendered to screen) Il
1]

film plane

* This is called ray tracing
* or image-oriented rendering.

« We’ll skip ray tracing part, see 14-reference-
RayTracing.pdf for more information about it.

Rasterization(in a broad sense) & Ray Tracing In
this Course

* Most topics we’ve covered are fundamental concepts
of computer graphics, regardless of these two rendering
approaches.

— Transformations, mesh, lighting, shading, texture, rotation,
CuUrves, ...

» EXcept some topics:

— Rendering Pipeline, Viewing, Projection, Viewport,
transformations

— Rasterization & Visibility (today’s topic)
« are specific to rasterization (in a broad sense).

Rasterization(in a narrow sense)

« Rasterization converts vertex representation to pixel
representation (fragments)

 First job: Compute which pixels belong to a primitive
— to enumerate the pixels covered by the primitive

« Second job: Interpolate values across the primitive
— e.g. colors computed at vertices
— e.g. normals at vertices

Rasterization(in a narrow sense)
« Aprimitive can be a point, line, or polygon

 Line drawing algorithms
— Digital differential analyzer (DDA)
— Bresenham's (a.k.a. Midpoint)
— Xiaolin Wu's

 Polygon drawing algorithms
— Scanline
— Boundary fill
— Flood fill

Rasterization(in a narrow sense)

« But, we'll just skip details of these algorithms.

« Actually, line drawing and polygon drawing are not so easy as
one might think.
— Computational efficiency, anti-aliasing, ...

« But graphics hardware take care of them!

— These algorithms were intensively studied in early days of computer
graphics, so quite mature now.

— Now basic algorithms are implemented in graphics hardware (GPU).

* So nowadays you can think lines and polygons as “primitives”
that are basically rendered.

Visibility Problem

* What is VISIBLE?

Red: viewing frustum, Blue: objects

Visibility Problem

 The answer IS:

The camera view

1

Visibility Problem

* What is NOT VISIBLE?

Visibility Problem

* What is NOT VISIBLE?

* Primitives outside of the
viewing frustum

Visibility Problem

* What is NOT VISIBLE?

* Primitives outside of the
viewing frustum

« Back-facing primitives

Visibility Problem

* What is NOT VISIBLE?

* Primitives outside of the
viewing frustum

« Back-facing primitives

* Primitives occluded by other
objects closer to the camera

Visibility Problem

* These invisible primitives
should be removed because...

* No need to spend time to process
Invisible vertices and polygons.

« A close object must hide a farther
one.

* S0, removing these primitives is
required for efficient and correct
rendering.

Visibility Problem

Removing...

* Primitives outside of the viewing frustum
* — Clipping (Viewing frustum culling)

« Back-facing primitives
« — Back-face culling

* Primitives occluded by other objects closer to the camera
« — Hidden surface removal

Clipping (Viewing Frustum Culling)

« Removing primitives outside of
the viewing frustum

» Clipping is much easier with —\

canonical view volume. J l | ‘ 1l \
I

— actually done in clip space

Clipping (Viewing Frustum Culling)

 Line clipping algorithms
— Cohen—Sutherland
— Liang—Barsky

— Cyrus—Beck

 Polygon clipping algorithms
— Sutherland—Hodgman
— Weiler—Atherton

Clipping (Viewing Frustum Culling)

Polygon clipping algorithms are more complicated.
— Vertices may be added to or deleted from the triangle.

* Again, let’s just skip details of these algorithms.

triangle — quad

* Most graphics APIs (including OpenGL) performs
clipping by default.

— You just set the view frustum, then OpenGL will do
clipping for you.

« 13-reference-rasterization,clipping.pdf has brief
slides about DDA & Cohen-Sutherland algorithms. If
you're interested, please refer it.

Back-Face Culling

* Removing back-facing primitives

« Determined by the dot product of
normal and view (camera)
vectors.

C3 .

n3-c3 =0
n3
edge-on face T
o < -f"
Discard! /tg,\ ‘ I\
[T J,-f'r "-, / I. \\II _,:'
O ' /},\:{______.___i—:: {____?7:'//\
back face X\\ /\ \\ A
MV

n2-c2 <)

front face

Back-Face Culling

« Back-face culling Is much more efficient with
canonical view volume

— Because In canonical view volume, we can use a single
view vector, (0,0,1).

view
vector
(0,0,1)

CAMETa space

(in RHS)

Back-Face Culling

. ﬂ.r/rd 'A

.\v\-/’

\\\..\ ’,‘.’lf/

\\\\ W '/d///
\Q)\‘)ﬂo/ ///

\ ,V/,«llhqm.ﬂ .ﬁ r‘”“V\A\&; 121
\» G
&2

///’I ..l\\.\\\

v/

L4
)
{

Back-Face Culling in OpenGL

e Can cull front faces or back faces
e Back-face culling can sometimes double

performance
if (cull): (initial value: GL_CCW)
glFrontFace (GL_CCW) # define winding order
glEnable (GL_ CULL FACE) # enable Culling(initially disabled)
glCullFace (GL_BACK) # which faces to cull
else:

glDisable (GL_CULL FACE)

You can also do front-face culling!

¢ ¥) Pl {
R . L
\ s N
S
1 ’

s G yhe 4
\ ! i
\ 1 .

26

Hidden Surface Removal

« Removing primitives occluded by
other objects closer to the camera

* Also known as

— Hidden Surface Elimination

— Hidden Surface Determination
— Visible Surface Determination
— Occlusion Culling

Hidden Surface Removal

« Many algorithms
— Z-buffer (Depth buffer)

— Painter’s algorithm
— BSP tree

o Z-buffer iIs the standard method.

* Let’s see the 1deas of Painter’s algorithm & Z-

buffer.

Frame Buffer (background knowledge for
understanding HSR algorithms)

* Frame buffer is the portion of memory to hold the
bitmapped image that Is sent to the (raster) display device.

« A frame buffer is characterized by its

width, height, and depth.

— E.g. The frame buffer size for 4K UHD

resolution with 32bit color depth = 3840 x

2160 x 32 bits

* Typically stored on the graphic card’s memory.

— But integrated graphics (e.g. Intel HD Graphics) use the main
memory to store the frame buffer.

Painter’s algorithm

» Simplest way to do hidden surfaces

* Draw from back to front, use overwriting in
framebuffer

* Requires sorting all polygons by their depth

Cornell CS4620 Fall 2008 « Lecture 10 © 2008 Steve Marschner * 3
0

Weakness of Painter’s Algorithm

* What if there are cycles in the sorted
graph?
— The only solution is dividing these
polygons into small pieces.

* Need to update the sorted graph
whenever camera or object location is
changed. '

* — Time-consuming!

The z buffer

* In many (most) applications maintaining a z sort is
too expensive

— changes all the time when the view changes
— many data structures exist, but complex

« Solution: draw Iin any order, keep track of closest
— Z-buffer keeps track of closest depth so far

— when drawing, compare object’s depth to current
closest depth and discard if greater

Cornell CS4620 Fall 2008 « Lecture 10 © 2008 Steve Marschner ¢ 3
2

Z-Buffering: Algorithm
allocate depth buffer; I/l Allocate depth buffer > Same size as viewport.

for each pixel (x,y) Il For each pixel in viewport.
write frame buffer (x,y,backgrnd color); //Initialize color.
write depth buffer (x,y,farPlane depth); //Initialize depth (z) buffer.

for each polygon /[Draw each polygon (in any order).
for each pixel (x,y) in polygon [/ Rasterize polygon.
color = polygon’s color at (x,y);
p, = polygon’s z-value at (x,y) ;// Interpolate z-value at (X, y).

if (p, < read depth buffer (x,y)) /I If new depth is closer:
write frame buffer (x,y,color); /[Write new (polygon) color.
write depth buffer(x,y,p,); /[Write new depth.

Frame buffer Z-buffer (Depth buffer)

Example: rendering three opaque triangles

]] ® e ®] ® ® []
[] [] ® ® [] [] ® ® []
o [[] ([] ® [] ® ® []

(MU 15-418/618, Fall 2015

Occlusion using the depth-buffer (Z-buffer)

Processing yellow triangle:
depth=0.5

O O O O O O O

o @] O O O O O

Color buffer contents

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

@] @) @) O O O O

O O O] [] O @]

O O O O O O O

O O @) O @] O o

Depth buffer contents

(MU 15-418/618, Fall 2015

Occlusion using the depth-buffer (Z-buffer)

After processing yellow triangle:

O O O

O O O

Color buffer contents

O

o

Grayscale value of sample point

used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

0] o
o @]
O o
O o
O O
O []
@ []
o O
o @]

O

O

O

@]

O

O

O

O

@]

Depth buffer contents

O O
O O
@) O
® O
® O
O @
® []
O O
O O

CMU 15-418/618, Fall 2015

Occlusion using the depth-buffer (Z-buffer)

Processing blue triangle:

depth=0.75

O @] O O
O O O O
o O O O
O O O

O o

O O O O
O O O O

Color buffer contents

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

@)

O O O &) o @] O

Depth buffer contents

(MU 15-418/618, Fall 2015

Occlusion using the depth-buffer (Z-buffer)

After processing blue triangle:

O O

O O

O

O O O O O O

O @) O O @) o O @)

Color buffer contents

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

o O @] o O O o

@] O e o O O
O O ®] O Q
o [] o e e O

o o [] e @ @ e
O O o O O o

O O O O O @) O

Depth buffer contents

(MU 15-418/618, Fall 2015

Occlusion using the depth-buffer (Z-buffer)

Processing red triangle:
depth =0.25

O ® [O O O

O O O O @] O

Color buffer contents

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O ®}
O O
O O
] O
e o
® ®
o L o o L] o

Depth buffer contents

(MU 15-418/618, Fall 2015

Occlusion using the depth-buffer (Z-buffer)

After processing red triangle:

O O O

Color buffer contents

O

O

O

O

O

O

Grayscale value of sample point

used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O

O

O

O

o

O

O

O

O

O

O

O

O

O

Depth buffer contents

O O
O O
O O
e O
o O
® @
® []
O O
O O

CMU 15-418/618, Fall 2015

Does depth-buffer algorithm handle
interpenetrating surfaces?

Of course!

Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

Green triangle in
front of yellow
triangle

Yellow triangle in
front of green
triangle ° [] .] []

CMU15-418/618, Fall 2015

Does depth-buffer algorithm handle
interpenetrating surfaces?

Of course!

Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

e * o * o ° ® o °
« °® ¢ * . e
e * o o ¢
. e e ©
e * e °
.]

CMU 15-418/618, Fall 2015

Z-Buffering : Summary

« Current standard algorithm that is implemented
on all graphics hardwares

« Advantages / Disadvantages:
— Easy to implement
— Fast with hardware support - Fast depth buffer memory
— Polygons can be drawn in any order
— Extra memory required for z-buffer
— not a problem anymore

Rendering(Graphics) Pipeline Again

[vertex L fragment
: I—l rasterization I—l : If
processing processing

. performs a . assembles . determines

sequence of vertex polygons converts color of each _

transformations each polygon into a fragment with {Output merglngJ
set of fragments light & texture

(pixels)

OpenGL/Direct3D graphics pipeline *
Structures rendering computation as a series of operations on vertices, primitives,
fragments, and screen samples

°3
ik °4 |nput: vertices in 3D space

' .
Operations on Jertexierocessing
vertices Vertex streaml o --------- L .))

P o | Verticesin positioned in normalized

Operations on Primitive Processing . : coordinate space
primitives | e

Primitive stream prmTmmmmememoeenneees :

(triangles, lines, etc.) : :
Fragment Generation Triangles positioned on screen
(Rasterization) §

Operations on Fragment stream H —
fragments . "B Fragments (one fragment per covered sample)
Fragmentierocessing = u =
Shaded fi tst o H
aded rragments reaml O ? Shaded fragments
Operations on Screen sample operations =

(depth and color) e :
screen samples : :

> Output: image (pixels)

* Several stages of the modern OpenGL pipeline are omitted CMU 15-462/662, Fall 2015

OpenGL/Direct3D graphics pipeline *
Structures rendering computation as a series of operations on vertices, primitives,
fragments, and screen samples

°3
ik °4 |nput: vertices in 3D space

' .
Operations on Jertexibrocessing'
vertices Vertex streaml o --------- .) .))

P o | Verticesin positioned in normalized

Operations on Primitive Processing . coordinate space
primitives | e

Primitive stream ey :

(triangles, lines, etc.) ———— : :
CIipping & s Fragment Generation Triangles positioned on screen
Back-face cuIIing (Rasterization) : :

Operations on Fragment stream H —
fragments . "B Fragments (one fragment per covered sample)

Fragmentierocessing = = -

Shaded fi tst o
aded rragments reaml O ? Shaded fragments
Operations on Screen sample operations =
(depth and color) . :

screen samples] :

Depth test > Output: image (pixels)

* Several stages of the modern OpenGL pipeline are omitted CMU 15-462/662, Fall 2015

OpenGL/Direct3D graphics pipeline *

°1 o
°4 |nput verticesin 3D space

°2

Operations on /ErtexiErocessing |<— transform matrices

vertices Vertex streaml

Operations on Primitive Processing

primitives o e

(triangles, lines, etc,) Primitivestream textures , lighting model & condition
Clipping & BN} Fragment Generation
Back-face culling (it

Operations on Fragment stream Pipe"ne inputS:

fragments

FragmentiProcessing]4_ — Input vertex data

— Parameters needed to compute position on vertices

Shaded fragment stream .) .)
in normalized coordinates (e.g., transform matrices)

Screen sample operations
(depth and color)

— Parameters needed to compute color of fragments
(e.g., textures)

Operations on
screen samples

Depth test

— “Shader” programs that define behavior of vertex
and fragment stages

* several stages of the modern OpenGL pipeline are omitted CMU 15-462/662, Fall 2015

OpenGL/Direct3D graphics pipeline *

o °4 |nput verticesin 3D space
v =
Operations on arad diudsly) €= transform matrices
vertices - streami

Primitive Processing

Operations on
primitives
(triangles, lines, etc.)

Primitive stream
—)

Fragment Generation

Clipping &
Back-face culling
Operations on

(Rasterization)

Fragment stream
\ 4

textures

, lighting model & condition

fragments
| Fragmenticrocessing

‘ I
Shaded fragment stream¢

Screen sample operations
(depth and color)

Operations on
screen samples

Depth test

* several stages of the modern OpenGL pipeline are omitted

Grey steps are automatically done by
modern graphics system

Yellow steps (and their inputs) SHOULD
be performed & provided by human

That's why we've been focusing on
these yellow things in this course!

You can even write your own software
renderer that covers whole process!

(MU 15-462/662, Fall 2015

Acknowledgement

* Acknowledgement: Some materials come from the lecture slides of
— Prof. Sung-eui Yoon, KAIST, https://sglab.kaist.ac.kr/~sungeui/CG/
— Prof. JungHyun Han, Korea Univ., http://media.korea.ac.kr/book/

— Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cqi

— Prof. Steve Marschner, Cornell Univ., http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

— Prof. Kayvon Fatahalian and Prof. Keenan Crane, CMU, http://15462.courses.cs.cmu.edu/fall2015/

https://sglab.kaist.ac.kr/~sungeui/CG/
http://media.korea.ac.kr/book/
http://calab.hanyang.ac.kr/cgi-bin/cg.cgi
http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml
http://15462.courses.cs.cmu.edu/fall2015/

Course Wrap-up

Do you remember?

« Computer graphics: The study of creating,
manipulating, and using visual images in the

Computer.
— -
‘ ~— Animation
(a series of
Modelling Simulation & Rendering Images)

Computer vision inverts the process
Image processing deals with images

Questions about Computer Graphics

To do this, we should be able to answer:

How to express movement, placement, shape, and
appearance of objects

How to map 3D objects into 2D screen

How the whole rendering process Is performed

Movement & placement

3 - Transformation 1

4 - Transformation 2

5 - Affine Geometry, Rendering Pipeline
7 - Hierarchical Modeling, Mesh

9 - Orientation & Rotation

10 - Animation

11 - Curves

Mapping to 2D screen

5 - Affine Geometry, Rendering Pipeline
6 - Viewing, Projection

Shape

7 - Hierarchical Modeling, Mesh
11 - Curves

Appearance

8 - Lighting & Shading
12 - More Lighting, Texture

Rendering Pipeline

5 - Affine Geometry, Rendering Pipeline
13 - Rasterization & Visibility

How do you feel?

 If you’ve had much more fun in this course than
other courses, you already have a great potential
to do Interesting research in computer graphics!

Computer Graphics @12| &4

. DE 1 AN =0 2 30|34 Ol = S E|
2 Lt27] =0, XHO] Ak

— Computer graphics = OF0| M= =& submit & [j
HIC|RE FSt= A0 7| &

How do you feel?

» If you’ve had much more fun in this course than other
courses, you already have a great potential to do
Interesting research in computer graphics!

 |If you think "that's me!",

— | recommend you to take "COMPUTER SCIENCE Capstone PBL
(Physically-Based Character Control)" (4t grade 15t semester)

— If you are interested in doing some "research", please do not hesitate
to mail to me: yoonsanglee@hanyang.ac.kr

« Computer Graphics and Robotics Lab. homepage:
— https://cgrhyu.qgithub.io/

mailto:yoonsanglee@hanyang.ac.kr
https://cgrhyu.github.io/

Thanks for
being a great
class!

