Computer Graphics

3 - Transformation 1

Yoonsang Lee
Spring 2020

(Modified) Notification for Quiz & Attendance

* |f you cannot answer during the given quiz time (2
mins) due to the streaming problem, you can
submit the quiz answer until the next quiz poll
opens.

 This policy Is maintained until the streaming
service Is stabilized.

Topics Covered

o 2D Transformation

— Scale, rotation, translation...

* Composing Transformations & Homogeneous
Coordinates

» 3D Cartesian Coordinate System

2D Transformations

What 1s Transformation?

« Geometric Transformation - 7|5} B &t

— One-to-one mapping (function) of a set having some
geometric structure to itself or another such set.

— More easily, “moving a set of points”

« Examples:

ey 7

Translate Rotate Scale Shear Reflect

Where are Transformations used?

 Movement

https://upload.wikimedia.org/wikipedia
/commons/0/05/Extra Simple Walker
3D Animation.qif

https://upload.wikimedia.org/wikipedia/commons/0/05/Extra_Simple_Walker_3D_Animation.gif

Transformation

* “Moving a set of points”
— Transformation T maps any input vector v in the vector
space S to T(v).

S - {T(v)|veS)

L_inear Transformation

* One way to define a transformation is by matrix
multiplication:

T(v)=Mv

 This is called a linear transformation because a
matrix multiplication represents a linear mapping.

T(au+v)=al(u)+T(v)
M- (au+ v) =aMu+ Mv

2D Linear Transformation

e 2X2 matrices represent 2D linear transformations
such as:
— uniform scale
— non-uniform scale
— rotation
— shear
— reflection

2D Linear Trans. — Uniform Scale

* Uniformly shrinks or enlarges both in x and y
directions.

ST

: T
/ oSt |yl sy
P

2x2 scale matrix S = p

2D Linear Trans. — Nonuniform Scale

* Non-uniformly shrinks or enlarges in x and y

directions.

Sx

0

0

Sy

Sy
SyY

A

1.5

0.8

Rotation

(cosS, sinS)

(1,0)

X

cosd -smné

snéd cosdé

‘(0,1)

(-sin&, cosE)

S,

: Rotation matrix

2D Linear Trans. — Rotation

 Rotation can be written in matrix multiplication, so
It's also a linear transformation.

— Note that positive angle means CCW rotation.

cos) —sinf| |x| |xcosl —ysinb
sinf cosf | |y| |xsinf + ycosb

A 0.866 -0.5
0.0 0.866

(Rotate 30
deg ccw)

Numbers in Matrices: Scale, Rotation

* Let’s think about what the numbers 1n the matrix
means.

o) ‘
scaling {

[1,0]T [r1,0]"
Canonical basis vectors: unit vectors 15t & 27¢ basis vector of the
pointing in the direction of the axes transformed coordinates

of a Cartesian coordinate system.

Numbers in Matrices: Scale, Rotation

[cose]
sin®
[0,1]"

—

rotation v [cos®, sinf]"
0 .

[1.0]"

 Column vectors of a matrix Is the basis vectors of
the column space (range) of the matrix.

— Column space of a matrix A: The span (a set of all
possible linear combinations) of its column vectors.

2D Linear Trans. — Reflection

 Reflection can be considered as a special case of
non-uniform scale.

2D Linear Trans. — Shear

 "Push things sideways"

.
O 1

x
Y

e a,y_

Identity Matrix

 "Doing nothing"

0] [x T
1_

1
0

[Practice] import glfu

from OpenGL.GL import *

Uniform import numpy as np
SCa|e def render (M) :

glClear (GL COLOR BUFFER BIT)
glLoadIdentity ()

draw cooridnate
glBegin (GL LINES)

glColor3ub (255, 0, 0)
glVertex2fv(np.array([0.,0.]))
glVertex2fv(np.array([1.,0.]))
glColor3ub (0, 255, 0)
glVertex2fv(np.array([0.,0.]1))
glVertex2fv(np.array([0.,1.]))
glEnd ()

draw triangle - p'=Mp
glBegin (GL TRIANGLES)

glColor3ub (255, 255, 255)
glVertex2fv (M np.array([0.0,0.5]))
glVertex2fv (M np.array([0.0,0.0]))
glVertex2fv (M np.array([0.5,0.0]))
alEnd ()

[Practice] def ma:n0:

] if not glfw.init():
Uniform return
window = glfw.create window (640,640, "2D
SCale Trans", None,None) a
if not window:
glfw.terminate ()
return
glfw.make context current (window)

B3 Tansformaton - o0 x while not glfw.window should close(window) :
glfw.poll events()

S = np.array([[2.,0.],
[0.,2.]])

render (S)

glfw.swap buffers(window)

glfw.terminate ()

if name == " _main_ "

main ()

[Practice] Animate It!

def main():
if not glfw.init():
return
window = glfw.create window(640,640,"2D Trans", None,None)
if not window:
glfw.terminate ()
return
glfw.make context current (window)

set the number of screen refresh to wait before calling glfw.swap buffer().
1f your monitor refresh rate is 60Hz, the while loop is repeated every 1/60 sec
glfw.swap interval (1)

while not glfw.window should close(window) :
glfw.poll events()

get the current time, 1in seconds
t = glfw.get_time()

s np.sin(t)
S = np.array([[s,0.],
[0.,s]])

render (S)

glfw.swap buffers(window)
glfw.terminate ()

[Practice] Nonuniform Scale, Rotation,
Reflection, Shear

while not glfw.window should close(window) :
glfw.poll events()
t = glfw.get time()

nonuniform scale

S = np.sin(t)
M = np.array([[s,0.1]1,
[0.,s*.5]11])
rotation
th = t
M = np.array([[np.cos(th), -np.sin(th)],
[np.sin(th), np.cos(th)]])
reflection
M = np.array([[-1.,0.1,
[0.,1.1]1)
shear
a = np.sin(t)
M = np.array([[1.,al,

[0.,1.11)

identity matrix
M = np.identity(2)

render (M)
glfw.swap buffers (window)

Quiz #1

* Go to https://www.slido.com/
 Join #cg-hyu
* Click “Polls”

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked for “attendance”.

https://www.slido.com/

2D Translation

 Translation is the simplest transformation:
T'(v) =v+u

* |Inverse:
T ' (v)=v—u

O

[Practice] Translation

def

def

render (u) :

t ...

glBegin (GL TRIANGLES)

glColor3ub (255, 255, 255)
glVertex2fv(np.array([0.0,0.5]) + u)
glVertex2fv(np.array([0.0,0.0]) + u)
glVertex2fv(np.array([0.5,0.0]) + u)
glEnd ()

main () :

#

while not glfw.window should close(window) :

glfw.poll events()
t = glfw.get time()

u = np.array([np.sin(t), 0.])
render (u)
#

Is translation linear transformation?

No. because It cannot be represented using a simple
matrix multiplication.

We can express It using vector addition:
T(v)=v+u

e Combining with linear transformation:
T(v)=Mv+u

=) Affine transformation

Let’s check again

* Linear transformation
— Scale, rotation, reflection, shear
— Represented as matrix multiplications

T(v)=Mv

 Translation
— Not a linear transformation
— Can be expressed using vector addition

T(v)=v+u

Affine Transformation

Linear transformation + Translation
T(v)=Mv+u

* Preserves lines
* Preserves parallel lines

 Preserves ratios of distance along a line

* — These properties are inherited from linear
transformations.

Rigid Transformation

 Rotation + Translation

T(V) — RV —+ W where R is a rotation matrix.

 Preserves distances between all points
 Preserves cross product for all vectors

|Practice] Affine Transformation

def render (M, u):
¥ ...

glBegin (GL TRIANGLES)

glColor3ub (255, 255, 255)

glVertex2fv (M np.array([0.0,0.5]) + u)

glVertex2fv (M np.array([0.0,0.0]) + u)

glVertex2fv (M np.array([0.5,0.0]) + u)

glEnd ()

def main():

i
while not glfw.window should close(window) :

glfw.poll events()
t = glfw.get time()

th = t

R np.array([[np.cos(th), -np.sin(th)],
[np.sin(th), np.cos(th)]])

u = np.array([np.sin(t), 0.])

render (R, u)

it

Quiz #2

* Go to https://www.slido.com/
 Join #cg-hyu
* Click “Polls”

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked for “attendance”.

https://www.slido.com/

Composing Transformations &
Homogeneous Coordinates

Composing Transformations

* Move an object, then move it some more
p—T(p)— ST (p) =(SoT)(p)

« Composing 2D linear transformations just works
by 2x2 matrix multiplication

T(p) = Mrp; S(p) = Msp
(S O T)(p) = MsMrp = (MgMyp)p = Mg(Mrp)

Order Matters!

 Note that matrix
multiplication is associative,

but not commutative.

(AB)C = A(BC)
AB # BA

« Asaresult, the order of P
transforms is very
Important.

[Practice] Composition

def main():
#
while not glfw.window should close(window) :
glfw.poll events()

S = np.array([[1.,0.],
[0.,2.11)

th = np.radians (60)

R = np.array([[np.cos(th), -np.sin(th)],
[np.sin(th), np.cos(th)]1)

u = np.zeros(2)

compare results of these two lines

render (R S, u) # p'=RSp

render (S @ R, u) # p'=SRp

#

Problems when handling Translation as
Vector Addition

« Cannot treat linear transformation (rotation,
scale,...) and translation 1n a consistent manner.

« Composing affine transformations is complicated

T'(p)=Mrp+ur (SoT)(p)=Ms(Mrp+ur)+us
S(p) = Msp + us = (MsMr7)p + (Msur + ug)

* We need a cleaner way!
==) Homogeneous coordinates

Homogeneous Coordinates

matrices

— For points, can always keepw =1

— 2D point [x, y]" — 3D vector [x, Yy, 1]".

Key idea: Represent 2D points in 3D coordinate space

Extra component w for vectors, extra row/column for

 Linear transformations are represented as:

e d ol |,
c d 0f |y
1

{a,x + by

d

Cr

Homogeneous Coordinates

 Translations are represented as:

1 0 [¢t] [= _QCl + ti
0 1 (s) |y| = |ylt+s
0 0 I |1 ’

 Affine transformations are represented as:

linear part \[mll ml?] [U’$]/ translational part

Moy TIa2) |Uy

0 0 1

Homogeneous Coordinates

« Composing affine transformations just works by
3x3 matrix multiplication

T(p) = Mrp+ur
S(p) = Msp + us

rp = [Mrour] g [Ms us
01 01

Homogeneous Coordinates

« Composing affine transformations just works by
3x3 matrix multiplication

0 1][0 1]]|1

(MsM7)p + (Msur + ug)
1

(SoT)(p) =

 Much cleaner

|[Practice] Homogeneous Coordinates

def render (M) :
...
glBegin (GL TRIANGLES)
glColor3ub (255, 255, 255)
glVertex2fv((M np.array([.0,.5,1.1))[:-1])
glVertex2fv((M np.array([.0,.0,1.1))[:-1])
glVertex2fv((M np.array([.5,.0,1.1))[:-1])
glEnd ()

|[Practice] Homogeneous Coordinates

def main () :
o
while not glfw.window should close(window) :
glfw.poll events()

rotate 60 deg about z axis

th = np.radians (60)

R = np.array([[np.cos(th), -np.sin(th),0.],
[np.sin(th), np.cos(th),0.],
[O., 0., 1.11)

translate by (.4, .1)

T = np.array([[1.,0.,.4],
[0.,1.,.1],
[0.,0.,1.1])

render (R) # p'=Rp

render(T) # p'=Tp

render (T @ R) # p'=TRp
render(R @ T) # p'=RTp
...

Summary: Homogeneous Coordinates in 2D

« Use (x,y,1)" instead of (x,y)' for 2D points

e Use 3x3 matrices instead of 2x2 matrices for 2D
linear transformations

o Use 3x3 matrices instead of vector additions for
2D translations

« — We can treat linear transformations and
translations In a consistent manner!

Quiz #3

* Go to https://www.slido.com/
 Join #cg-hyu
* Click “Polls”

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked for “attendance”.

https://www.slido.com/

3D Cartesian Coordinate
System

Now, Let’s go to the 3D world!

Ay A

» Coordinate system (ZtE4|)
— Cartesian coordinate system (& W ZHE A|)

Two Types of 3D Cartesian Coordinate Systems

What we’'re using

Y

Y

0

Right-handed
Cartesian Coordinates

A

Z/C@@

= X

Left-handed
Cartesian Coordinates

Y
A

zZ

ag)

=X

Positive rotation

counterclockwise about the

clockwise about the axis of

direction axis of rotation rotation
Ny 17
Used in... OpenGL, Maya, Houdini, DirectX, Unity, Unreal, ...

AutoCAD, ...

\ Standard for Physics & Math

Point Representation

IN Cartesian &

Homogeneous Coordinate System

Cartesian Homogeneous
coordinate system | coordinate system
A 2D point is Tl T
represented as... 'p | Pz
5
Py
Py_ 1
A 3D point is o5
represented as... Ny Px
Dz
Py
Py
Pz
Dz _ 1

Next Time

* Lab in this week:
— Lab assignment 3

 Next lecture:
— 4 - Transformation 2

* Acknowledgement: Some materials come from the lecture slides of

— Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cqi
— Prof. Steve Marschner, Cornell Univ., http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

http://calab.hanyang.ac.kr/cgi-bin/cg.cgi
http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

