Computer Graphics

3 - Transformation 1

Yoonsang Lee
Spring 2020

(Modified) Notification for Quiz \& Attendance

- If you cannot answer during the given quiz time (2 mins) due to the streaming problem, you can submit the quiz answer until the next quiz poll opens.
- This policy is maintained until the streaming service is stabilized.

Topics Covered

- 2D Transformation
- Scale, rotation, translation...
- Composing Transformations \& Homogeneous Coordinates
- 3D Cartesian Coordinate System

2D Transformations

What is Transformation?

- Geometric Transformation - 기하 변환
- One-to-one mapping (function) of a set having some geometric structure to itself or another such set.
- More easily, "moving a set of points"
- Examples:

Translate

Rotate

Scale

Shear

Reflect

Where are Transformations used?

- Movement

https://upload.wikimedia.org/wikipedia /commons/0/05/Extra Simple Walker
3D Animation.gif
- Image/object manipulation

- Viewing, projection transform

Transformation

- "Moving a set of points"
- Transformation T maps any input vector v in the vector space S to $T(v)$.

$$
S \rightarrow\{T(\mathbf{v}) \mid \mathbf{v} \in S\}
$$

Linear Transformation

- One way to define a transformation is by matrix multiplication:

$$
T(\mathbf{v})=M \mathbf{v}
$$

- This is called a linear transformation because a matrix multiplication represents a linear mapping.

$$
\begin{gathered}
T(a \mathbf{u}+\mathbf{v})=a T(\mathbf{u})+T(\mathbf{v}) \\
\mathbf{M} \cdot(a \mathbf{u}+\mathbf{v})=a \mathbf{M} \mathbf{u}+\mathbf{M} \mathbf{v}
\end{gathered}
$$

2D Linear Transformation

- $2 x 2$ matrices represent 2 D linear transformations such as:
- uniform scale
- non-uniform scale
- rotation
- shear
- reflection

2D Linear Trans. - Uniform Scale

- Uniformly shrinks or enlarges both in x and y directions.

2D Linear Trans. - Nonuniform Scale

- Non-uniformly shrinks or enlarges in x and y directions.

$$
\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
s_{x} x \\
s_{y} y
\end{array}\right]
$$

Rotation

2D Linear Trans. - Rotation

- Rotation can be written in matrix multiplication, so it's also a linear transformation.
- Note that positive angle means CCW rotation.

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \cos \theta-y \sin \theta \\
x \sin \theta+y \cos \theta
\end{array}\right]
$$

Numbers in Matrices: Scale, Rotation

- Let's think about what the numbers in the matrix means.

Canonical basis vectors: unit vectors pointing in the direction of the axes of a Cartesian coordinate system.

$1^{\text {st }} \& 2^{\text {nd }}$ basis vector of the transformed coordinates

Numbers in Matrices: Scale, Rotation

- Column vectors of a matrix is the basis vectors of the column space (range) of the matrix.
- Column space of a matrix A: The span (a set of all possible linear combinations) of its column vectors.

2D Linear Trans. - Reflection

- Reflection can be considered as a special case of non-uniform scale.

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

2D Linear Trans. - Shear

- "Push things sideways"

$$
\left[\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+a y \\
y
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
1 & 0.5 \\
0 & 1
\end{array}\right]
$$

Identity Matrix

- "Doing nothing"

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

[Practice] Uniform Scale

import glfw
from OpenGL.GL import *
import numpy as np
def render (M):
glClear(GL_COLOR_BUFFER_BIT)
glLoadIdentity()
\# draw cooridnate glBegin(GL_LINES) glColor3ub(255, 0, 0) glVertex2fv(np.array([0.,0.])) glVertex2fv(np.array([1.,0.])) glColor3ub(0, 255, 0) glVertex2fv(np.array([0.,0.])) glVertex2fv(np.array([0.,1.])) glEnd()
\# draw triangle - p'=Mp glBegin(GL_TRIANGLES) glColor3ub(255, 255, 255)
glVertex2fv(M @ np.array ([0.0,0.5]))
glVertex2fv(M @ np.array ([0.0,0.0])) qlVertex2fv(M @ np.array([0.5,0.0]))
qlEnd ()

[Practice] Uniform Scale

```
def main():
    if not glfw.init():
        return
    window \(=\) glfw.create_window (640,640, "2D
Trans", None,None)
    if not window:
            glfw.terminate()
            return
    glfw.make_context_current(window)
    while not glfw.window_should_close(window):
                        glfw.poll_events()
                S = np.array([[2.,0.],
                                    [0.,2.]])
    render (S)
                            glfw.swap_buffers(window)
    glfw.terminate()
```

if __name__ == "__main__":
main()

[Practice] Animate It!

```
def main():
    if not glfw.init():
        return
    window = glfw.create_window(640,640,"2D Trans", None,None)
    if not window:
        glfw.terminate()
        return
    glfw.make_context_current(window)
    # set the number of screen refresh to wait before calling glfw.swap_buffer().
    # if your monitor refresh rate is 60Hz, the while loop is repeated every 1/60 sec
    glfw.swap_interval(1)
    while not glfw.window_should_close(window):
        glfw.poll_events()
        # get the current time, in seconds
        t = glfw.get_time()
        s = np.sin(t)
        S = np.array([ [s,0.],
                [0.,s]])
        render(S)
        glfw.swap_buffers(window)
    glfw.terminate()
```


[Practice] Nonuniform Scale, Rotation, Reflection, Shear

```
while not glfw.window_should_close(window):
    glfw.poll_events()
    t = glfw.get_time()
    # nonuniform scale
    s = np.sin(t)
    M = np.array([[s,0.],
        [0.,s*.5]])
    # rotation
    th = t
    M = np.array([[np.cos(th), -np.sin(th)],
                        [np.sin(th), np.cos(th)]])
    # reflection
    M = np.array([[-1.,0.],
                        [0.,1.]])
    # shear
    a = np.sin(t)
    M = np.array([[1.,a],
        [0.,1.]])
    # identity matrix
    M = np.identity(2)
    render(M)
    glfw.swap_buffers(window)
```


Quiz \#1

- Go to https://www.slido.com/
- Join \#cg-hyu
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

2D Translation

- Translation is the simplest transformation:

$$
T(\mathbf{v})=\mathbf{v}+\mathbf{u}
$$

- Inverse:

$$
T^{-1}(\mathbf{v})=\mathbf{v}-\mathbf{u}
$$

[Practice] Translation

```
def render(u):
    # ....
    glBegin(GL_TRIANGLES)
    glColor3ub(255, 255, 255)
    glVertex2fv(np.array([0.0,0.5]) + u)
    glVertex2fv(np.array([0.0,0.0]) + u)
    glVertex2fv(np.array([0.5,0.0]) + u)
    glEnd()
def main():
    #
    while not glfw.window_should_close(window):
        glfw.poll_events()
        t = glfw.get_time()
        u = np.array([np.sin(t), 0.])
        render(u)
        # ...
```


Is translation linear transformation?

- No. because it cannot be represented using a simple matrix multiplication.
- We can express it using vector addition:

$$
T(\mathbf{v})=\mathbf{v}+\mathbf{u}
$$

- Combining with linear transformation: $T(\mathbf{v})=M \mathbf{v}+\mathbf{u}$

Affine transformation

Let's check again

- Linear transformation
- Scale, rotation, reflection, shear
- Represented as matrix multiplications

$$
T(\mathbf{v})=M \mathbf{v}
$$

- Translation
- Not a linear transformation
- Can be expressed using vector addition

$$
T(\mathbf{v})=\mathbf{v}+\mathbf{u}
$$

Affine Transformation

- Linear transformation + Translation

$$
T(\mathbf{v})=M \mathbf{v}+\mathbf{u}
$$

- Preserves lines
- Preserves parallel lines
- Preserves ratios of distance along a line
- \rightarrow These properties are inherited from linear transformations.

Rigid Transformation

- Rotation + Translation

$$
T(\mathbf{v})=R \mathbf{v}+\mathbf{u} \quad, \text { where } \mathrm{R} \text { is a rotation matrix. }
$$

- Preserves distances between all points
- Preserves cross product for all vectors

[Practice] Affine Transformation

```
def render(M, u):
    # ...
    glBegin(GL_TRIANGLES)
    glColor3ub(255, 255, 255)
    glVertex2fv(M @ np.array([0.0,0.5]) + u)
    glVertex2fv(M @ np.array([0.0,0.0]) + u)
    glVertex2fv(M @ np.array([0.5,0.0]) + u)
    glEnd()
def main():
    # ...
    while not glfw.window_should_close(window):
    glfw.poll_events()
    t = glfw.get_time()
    th}=
    R = np.array([[np.cos(th), -np.sin(th)],
        [np.sin(th), np.cos(th)]])
    u = np.array([np.sin(t), 0.])
    render(R, u)
    # ...
```


Quiz \#2

- Go to https://www.slido.com/
- Join \#cg-hyu
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Composing Transformations \& Homogeneous Coordinates

Composing Transformations

- Move an object, then move it some more

$$
\mathbf{p} \rightarrow T(\mathbf{p}) \rightarrow S(T(\mathbf{p}))=(S \circ T)(\mathbf{p})
$$

- Composing 2D linear transformations just works by $\mathbf{2 x} 2$ matrix multiplication

$$
\begin{aligned}
& T(\mathbf{p})=M_{T} \mathbf{p} ; S(\mathbf{p})=M_{S} \mathbf{p} \\
& \quad(S \circ T)(\mathbf{p})=M_{S} M_{T} \mathbf{p}=\left(M_{S} M_{T}\right) \mathbf{p}=M_{S}\left(M_{T} \mathbf{p}\right)
\end{aligned}
$$

Order Matters!

- Note that matrix multiplication is associative, but not commutative.

$$
\begin{aligned}
& (A B) C=A(B C) \\
& A B \neq B A
\end{aligned}
$$

- As a result, the order of transforms is very important.

[Practice] Composition

```
def main():
    # ...
    while not glfw.window_should_close(window):
    glfw.poll_events()
    S = np.array([[1.,0.],
    [0.,2.]])
th = np.radians(60)
R = np.array([[np.cos(th), -np.sin(th)],
    [np.sin(th), np.cos(th)]])
u = np.zeros(2)
# compare results of these two lines
render(R @ S, u) # p'=RSp
# render(S @ R, u) # p'=SRp
#
```


Problems when handling Translation as Vector Addition

- Cannot treat linear transformation (rotation, scale,...) and translation in a consistent manner.
- Composing affine transformations is complicated

$$
\begin{array}{rlrl}
T(\mathbf{p}) & =M_{T} \mathbf{p}+\mathbf{u}_{T} & (S \circ T)(\mathbf{p}) & =M_{S}\left(M_{T} \mathbf{p}+\mathbf{u}_{T}\right)+\mathbf{u}_{S} \\
S(\mathbf{p})=M_{S} \mathbf{p}+\mathbf{u}_{S} & & =\left(M_{S} M_{T}\right) \mathbf{p}+\left(M_{S} \mathbf{u}_{T}+\mathbf{u}_{S}\right)
\end{array}
$$

- We need a cleaner way!

Homogeneous coordinates

Homogeneous Coordinates

- Key idea: Represent 2D points in 3D coordinate space
- Extra component w for vectors, extra row/column for matrices
- For points, can always keep $w=1$
-2 D point $[\mathrm{x}, \mathrm{y}]^{\mathrm{T}} \rightarrow 3 \mathrm{D}$ vector $[\mathrm{x}, \mathrm{y}, 1]^{\mathrm{T}}$.
- Linear transformations are represented as:

$$
\left[\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
a x+b y \\
c x+d y \\
1
\end{array}\right]
$$

Homogeneous Coordinates

- Translations are represented as:

$$
\left[\begin{array}{lll}
1 & 0 & t \\
0 & 1 & t \\
s & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
x+t \\
y+s \\
1
\end{array}\right]
$$

- Affine transformations are represented as:

Homogeneous Coordinates

- Composing affine transformations just works by 3x3 matrix multiplication

$$
\begin{aligned}
& T(\mathbf{p})=M_{T} \mathbf{p}+\mathbf{u}_{T} \\
& S(\mathbf{p})=M_{S} \mathbf{p}+\mathbf{u}_{S}
\end{aligned}
$$

$$
T(\mathbf{p})=\left[\begin{array}{cc}
M_{T}^{2 \times 2} & \mathbf{u}_{T}^{2 \times 1} \\
0 & 1
\end{array}\right]
$$

$$
S(\mathbf{p})=\left[\begin{array}{cc}
M_{S}^{2 \times 2} & \mathbf{u}_{S}^{2 \times 7} \\
0 & 1
\end{array}\right]
$$

Homogeneous Coordinates

- Composing affine transformations just works by 3x3 matrix multiplication

$$
\begin{gathered}
(S \circ T)(\mathbf{p})=\left[\begin{array}{cc}
M_{S}^{2 \times 2} & \mathbf{u}_{S}^{2 \times \times} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
M_{T}^{2 \times 2} & \mathbf{u}_{T}^{2 \times 1} \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
2 \times \mathrm{p} \\
1
\end{array}\right] \\
=\left[\begin{array}{c}
\left(M_{S} M_{T}\right) \mathbf{p}+\left(M_{S} \mathbf{u}_{T}+\mathbf{u}_{S}\right) \\
1
\end{array}\right]
\end{gathered}
$$

- Much cleaner

[Practice] Homogeneous Coordinates

```
def render(M):
    # ...
    glBegin(GL_TRIANGLES)
    glColor3ub(255, 255, 255)
    glVertex2fv( (M @ np.array([.0,.5,1.]))[:-1] )
    glVertex2fv( (M @ np.array([.0,.0,1.]))[:-1] )
    glVertex2fv( (M @ np.array([.5,.0,1.]))[:-1] )
    glEnd()
```


[Practice] Homogeneous Coordinates

```
def main():
    # ...
    while not glfw.window_should_close(window):
    glfw.poll_events()
    # rotate 60 deg about z axis
    th = np.radians(60)
    R = np.array([[np.cos(th), -np.sin(th),0.],
    [np.sin(th), np.cos(th),0.],
    [0., 0., 1.]])
    # translate by (.4, .1)
    T = np.array([[1.,0.,.4],
    [0.,1.,.1],
    [0.,0.,1.]])
    render(R) # p'=Rp
    # render(T) # p'=Tp
    # render(T @ R) # p'=TRp
    # render(R @ T) # p'=RTp
    #
```


Summary: Homogeneous Coordinates in 2D

- Use ($\mathbf{x}, \mathbf{y}, \mathbf{1})^{\mathbf{T}}$ instead of $(\mathrm{x}, \mathrm{y})^{\mathrm{T}}$ for 2D points
- Use $\mathbf{3 x} \mathbf{3}$ matrices instead of 2×2 matrices for 2D linear transformations
- Use $\mathbf{3 x} \mathbf{3}$ matrices instead of vector additions for 2D translations
- \rightarrow We can treat linear transformations and translations in a consistent manner!

Quiz \#3

- Go to https://www.slido.com/
- Join \#cg-hyu
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

3D Cartesian Coordinate System

Now, Let's go to the 3D world!

- Coordinate system (좌표계)
- Cartesian coordinate system (직교좌표계)

Two Types of 3D Cartesian Coordinate Systems

What we're using

	Right-handed Cartesian Coordinates	Left-handed Cartesian Coordinates
Positive rotation direction	counterclockwise about the axis of rotation	clockwise about the axis of rotation
Used in...	OpenGL, Maya, Houdini, AutoCAD, ... Standard for Physics \& Math	DirectX, Unity, Unreal, ...

Point Representation in Cartesian \& Homogeneous Coordinate System

	Cartesian coordinate system	Homogeneous coordinate system
A 2D point is represented as...	$\left[\begin{array}{c}p_{x} \\ p_{y}\end{array}\right]$	$\left[\begin{array}{c}p_{x} \\ p_{y} \\ 1\end{array}\right]$
A 3D point is represented as....	$\left[\begin{array}{c}p_{x} \\ p_{y} \\ p_{z}\end{array}\right]$	$\left[\begin{array}{c}p_{x} \\ p_{y} \\ p_{z} \\ 1\end{array}\right]$

- Lab in this week:
- Lab assignment 3
- Next lecture:
- 4 - Transformation 2
- Acknowledgement: Some materials come from the lecture slides of
- Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cgi
- Prof. Steve Marschner, Cornell Univ., http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

