
Computer Graphics

5 - Affine Matrix, Rendering Pipeline

Yoonsang Lee

Spring 2020

Topics Covered

• Coordinate System & Reference Frame

• Meanings of an Affine Transformation Matrix

• Interpretation of a Series of Transformations

• Rendering Pipeline

– Vertex Processing

• Modeling transformation

Coordinate System & Reference Frame

• Coordinate system

– A system which uses one or more

numbers, or coordinates, to

uniquely determine the position of

points.

• Reference frame

– Abstract coordinate system +

physical reference points (to

uniquely fix the coordinate

system).

Coordinate System & Reference Frame

• Two terms are slightly different:

– Coordinate system is a mathematical concept, about a

choice of “language” used to describe observations.

– Reference frame is a physical concept related to state of

motion.

– You can think the coordinate system determines the way

one describes/observes the motion in each reference

frame.

• But these two terms are often mixed.

Global & Local Coordinate System(or Frame)

• global coordinate system (or global frame)

– A coordinate system(or frame) attached to the world.

– A.k.a. world coordinate system, fixed coordinate system

• local coordinate system (or local frame)

– A coordinate system(or frame) attached to a moving object.

https://commons.wikimedia.org/w
iki/File:Euler2a.gif

Blue: global coordinates
Red: local coordinates

https://commons.wikimedia.org/wiki/File:Euler2a.gif

Meanings of an Affine

Transformation Matrix

1) A 4x4 Affine Transformation Matrix

transforms a Geometry w.r.t. Global Frame

M =

{global frame}

Translate, rotate, scale, ...

Every vertex position (w.r.t. the global frame)

of the cube is transformed to another position

(w.r.t. the global frame)

Transformed geometry

Review: Affine Frame

• An affine frame in 3D space is defined by three

vectors and one point

– Three vectors for x, y, z axes

– One point for origin

Global Frame

• A global frame is usually represented by

– Standard basis vectors for axes :

– Origin point :

Let’s transform a "global frame"

• Apply M to this "global frame", that is,

– Multiply M with the x, y, z axis vectors and the origin

point of the global frame:

x axis vector y axis vector

z axis vector origin point

2) A 4x4 Affine Transformation Matrix

defines an Affine Frame w.r.t. Global Frame

M =

{frame 1}

(object's local frame)

{global frame}

→ M is the axis vectors and

origin point of a new frame

(represented in the global

frame)

x axis

vector

y axis

vector origin

point

z axis

vector

Examples

This frame is

defined by:

This frame is

defined by:

x axis

vector y axis

vector

origin

point
z axis

vector

of the frame represented in

the global frame
x axis

vector
y axis

vector

origin

point

z axis

vector

Quiz #1

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

3) A 4x4 Affine Transformation Matrix transforms

a Point Represented in an Affine Frame to (the

same) Point (but) Represented in Global Frame

{0}

(global frame)

p{1} = pl

Standing at {1},

observing p

(p{1}, pl is the position

w.r.t local frame)

p{0}=Mpl

Standing at {0}, observing p

(p{0} is the position w.r.t. global frame)

M = {1}

pl = (1, 1, 0)

3) A 4x4 Affine Transformation Matrix transforms

a Point Represented in an Affine Frame to (the

same) Point (but) Represented in Global Frame

Because...

{0}

(global frame)

Let’s say we

have the same

cube object

and its local

frame

coincident with

the global

frame

M =

Then, it’s a just story of

transforming a geometry!

pl = (1, 1, 0)

pl = (1, 1, 0)

Quiz #2

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

All these concepts works even if the original

frame is not global frame!

M1M2

{2}

{0}

(global frame)

M1

M2

{1}

pl = (1, 1, 0)

That is,

• 1) M1M2 transforms a geometry (represented in {0}) w.r.t. {0}

– p{2}=pl, p
{1}=M2pl, p{0}=M1M2pl

• 2) M1M2 defines an {2} w.r.t. {0}

• 3) M1M2 transforms a point represented in {2} to the same point but
represented in {0}

M1M2

{2}

{0}

(global frame)

M1

M2

{1}

pl = (1, 1, 0)

That is,

• 1) M2 transforms a geometry (represented in {1}) w.r.t. {1}

• 2) M2 defines an {2} w.r.t. {1}

• 3) M2 transforms a point represented in {2} to the same
point but represented in {1}

M1M2

{2}

{0}

(global frame)

M1

M2

{1}

pl = (1, 1, 0)

Interpretation of a Series of

Transformations

Revisit: Order Matters!

• If T and R are matrices representing
affine transformations,

• p' = TRp

– First apply transformation R to point p,
then apply transformation T to transformed
point Rp

• p' = RTp

– First apply transformation T to point p,
then apply transformation R to transformed
point Tp

Interpretation of Composite Transformations #1

• An example transformation:

• This is how we’ve interpreted so far:

– R-to-L: Transforms w.r.t. global frame

p

p'' = T(Rp)p' = Rp

M

Interpretation of Composite Transformations #2

• An example transformation:

• Another way of interpretation:

– L-to-R: Transforms w.r.t. local frame

M = T

M = TR

M = I
p'' = TRp

p

p' = Tp

M

Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p

M1
M2

M3

M4

Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p = (1, 1, 0)

Standing at {4}, observing p

Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p'

Standing at {3}, observing p

p' = M4 p

M4

Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p'

Standing at {2}, observing p

p' = M3 M4 p

M3

M4

Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p'

Standing at {1}, observing p

p' = M2 M3 M4 p

M3

M4

M2

Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p'

Standing at {0}, observing p

p' = M1 M2 M3 M4 p

M3

M4

M2M1

Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)

p

Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)

M1

p'

Standing at {0}, observing p'

p' = M1 p

Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)

M1
M2 p'

Standing at {0}, observing p'

p' = M1 M2 p

Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)

M1
M2

M3

p'

Standing at {0}, observing p'

p' = M1 M2 M3 p

Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p`

M1
M2

M3

M4

Standing at {0}, observing p'

p' = M1 M2 M3 M4 p

Left & Right Multiplication

• Thinking it deeper, we can see:

• p' = RTp (left-multiplication by R)

– (R-to-L) Apply T to a point p w.r.t. global frame.

– Apply R to a point Tp w.r.t. global frame.

• p' = TRp (right-multiplication by R)

– (L-to-R) Apply T to a point p w.r.t. local frame.

– Apply R to a point Tp w.r.t local frame.

[Practice] Interpretation of Composite

Transformations

• Just start from the previous lecture code "[Practice]

OpenGL Trans. Functions".

• Differences are:
def drawFrame():

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([1.,0.,0.]))

glColor3ub(0, 255, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([0.,1.,0.]))

glColor3ub(0, 0, 255)

glVertex3fv(np.array([0.,0.,0]))

glVertex3fv(np.array([0.,0.,1.]))

glEnd()

[Practice] Interpretation of Composite

Transformations

def render(camAng):

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glLoadIdentity()

glOrtho(-1,1, -1,1, -1,1)

gluLookAt(.1*np.sin(camAng),.1,.1*np.cos(camAng), 0,0,0, 0,1,0)

draw global frame

drawFrame()

1) p'=TRp

glTranslatef(.4, .0, 0)

drawFrame() # frame defined by T

glRotatef(60, 0, 0, 1)

drawFrame() # frame defined by TR

2) p'=RTp

glRotatef(60, 0, 0, 1)

drawFrame() # frame defined by R

glTranslatef(.4, .0, 0)

drawFrame() # frame defined by RT

drawTriangle()

Quiz #3

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Rendering Pipeline

Rendering Pipeline

• A conceptual model that describes what steps a

graphics system needs to perform to render a 3D

scene to a 2D image.

• Also known as graphics pipeline.

Rendering Pipeline

vertex

processing
rasterization

fragment

processing

output merging

: performs a

sequence of vertex

transformations

: assembles

polygons & converts

each polygon into a

set of fragments

(pixels)

: determines

color of each

fragment with

light & texture

Rendering Pipeline

vertex

processing
rasterization

fragment

processing

output merging

→ We’ll see today & next lecture

What we’ve been done so far
: performs a

sequence of vertex

transformations

Vertex Processing

glVertex3fv(p1)

glVertex3fv(p2)

glVertex3fv(p3)

…or

glVertex3fv(Mp1)

glVertex3fv(Mp2)

glVertex3fv(Mp3)

glMultMatrixf(MT)

glVertex3fv(p1)

glVertex3fv(p2)

glVertex3fv(p3)

Set vertex

positions

Transformed

vertices

Vertex positions in

2D viewport

M ?
Let’s think a “camera”

is watching the “scene”.

Then what we have to do are…

2. Placing the “camera”

3. Selecting a “lens”

4. Displaying on a “cinema screen”

1. Placing objects

In Terms of CG Transformation,

• 1. Placing objects

→ Modeling transformation

• 2. Placing the “camera”

→ Viewing transformation

• 3. Selecting a “lens”

→ Projection transformation

• 4. Displaying on a “cinema screen”

→ Viewport transformation

• All these transformations just work by matrix multiplications!

Vertex Processing (Transformation Pipeline)

World space

Object space

Translate, scale, rotate, ... any affine transformations

(What we’ve already covered in prev. lectures)

Local coordinates

Global coordinates

Vertex Processing (Transformation Pipeline)

World space

Object space

Modeling transformation

Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Placing the “camera”

Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Viewing transformation

Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Selecting a “lens”

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Projection transformation

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Screen space

(Image space)

Displaying on a

“cinema screen”

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Screen space

(Image space)

Viewport transformation

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

Vertex Processing (Transformation Pipeline)

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection

transformation

Viewport

transformation

Viewing

transformation

Modeling

transformation

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

Vertex Processing (Transformation Pipeline)

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection

transformation

Viewport

transformation

Viewing

transformation

Modeling

transformation

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

All these transformations just work

by matrix multiplications!

Vertex Processing (Transformation Pipeline)

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection

transformation

: Mpj

Viewport

transformation

: Mvp

Viewing

transformation

: Mv

Modeling

transformation

: Mm

po ps

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

ps = Mvp Mpj Mv Mm po

Modeling Transformation

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Modeling

transformation

: Mm

po

pw

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

pw = Mm po

Modeling Transformation

• Geometry would originally have been in the object’s local
coordinates;

• Transform into world coordinates is called the modeling
matrix, Mm

• Composite affine transformations

• (What we’ve covered so far!)

World space

Object space
Translate, rotate, scale, ...

(Affine transformation)po

pw

Mm

Mm
wheel

Mm
cab

Mm
container

Wheel object space

Cab object space

Container object space

World space
local coordinates

global coordinates

Next Time

• Lab in this week:

– No lab this week, but the assignment will be handed

out with extended due.

• Next lecture:

– 6 - Viewing, Projection

• Acknowledgement: Some materials come from the lecture slides of

– Prof. Jinxiang Chai, Texas A&M Univ., http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html

http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html

