Computer Graphics

5 - Affine Matrix, Rendering Pipeline

Yoonsang Lee
Spring 2020

Topics Covered

- Coordinate System \& Reference Frame
- Meanings of an Affine Transformation Matrix
- Interpretation of a Series of Transformations
- Rendering Pipeline
- Vertex Processing
- Modeling transformation

Coordinate System \& Reference Frame

- Coordinate system
- A system which uses one or more numbers, or coordinates, to uniquely determine the position of ${ }_{z}$. points.

Cartesian (α, Y, Z components) coordinate system 0 (C.S. O)

Oylindrical ($\mathrm{R}, \mathrm{q}, \mathrm{Z}$ components) coordinate system 1 (C.S. 1)

- Reference frame
- Abstract coordinate system + physical reference points (to uniquely fix the coordinate system).

Coordinate System \& Reference Frame

- Two terms are slightly different:
- Coordinate system is a mathematical concept, about a choice of "language" used to describe observations.
- Reference frame is a physical concept related to state of motion.
- You can think the coordinate system determines the way one describes/observes the motion in each reference frame.
- But these two terms are often mixed.

Global \& Local Coordinate System(or Frame)

- global coordinate system (or global frame)
- A coordinate system(or frame) attached to the world.
- A.k.a. world coordinate system, fixed coordinate system
- local coordinate system (or local frame)
- A coordinate system(or frame) attached to a moving object.

https://commons.wikimedia.org/w iki/File:Euler2a.gif

Meanings of an Affine Transformation Matrix

1) A $4 x 4$ Affine Transformation Matrix transforms a Geometry w.r.t. Global Frame

Translate, rotate, scale, ...
\{global frame\}

Transformed geometry

Every vertex position (w.r.t. the global frame) of the cube is transformed to another position (w.r.t. the global frame)

Review: Affine Frame

- An affine frame in 3D space is defined by three vectors and one point
- Three vectors for $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes
- One point for origin

Global Frame

- A global frame is usually represented by
- Standard basis vectors for axes : $\hat{\mathbf{e}}_{x}, \hat{\mathbf{e}}_{y}, \hat{\mathbf{e}}_{z}$
- Origin point : 0

$$
\begin{gathered}
\hat{\mathbf{e}}_{y}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]^{T} \\
{\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]^{T}=\mathbf{0}} \\
\hat{\mathbf{e}}_{z}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{T}
\end{gathered}
$$

Let's transform a 'global frame"

- Apply M to this "global frame", that is,
- Multiply M with the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis vectors and the origin point of the global frame:
x axis vector
$\left[\begin{array}{cccc}m_{11} & m_{12} & m_{13} & u_{x} \\ m_{21} & m_{22} & m_{23} & u_{y} \\ m_{31} & m_{32} & m_{33} & u_{z} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}m_{11} \\ m_{21} \\ m_{31} \\ 0\end{array}\right]$
z axis vector
$\left[\begin{array}{cccc}m_{11} & m_{12} & m_{13} & u_{x} \\ m_{21} & m_{22} & m_{23} & u_{y} \\ m_{31} & m_{32} & m_{33} & u_{z} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}0 \\ 0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}m_{13} \\ m_{23} \\ m_{33} \\ 0\end{array}\right]$
y axis vector

$$
\left[\begin{array}{cccc}
m_{11} & m_{12} & m_{13} & u_{x} \\
m_{21} & m_{22} & m_{23} & u_{y} \\
m_{31} & m_{32} & m_{33} & u_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
m_{12} \\
m_{22} \\
m_{32} \\
0
\end{array}\right]
$$

origin point

$$
\left[\begin{array}{cccc}
m_{11} & m_{12} & m_{13} & u_{x} \\
m_{21} & m_{22} & m_{23} & u_{y} \\
m_{31} & m_{32} & m_{33} & u_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
u_{x} \\
u_{y} \\
u_{z} \\
1
\end{array}\right]
$$

2) A $4 x 4$ Affine Transformation Matrix defines an Affine Frame w.r.t. Global Frame

Examples

Quiz \#1

- Go to https://www.slido.com/
- Join \#cg-hyu
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

3) A 4×4 Affine Transformation Matrix transforms

 a Point Represented in an Affine Frame to (the same) Point (but) Represented in Global Frame
3) A 4×4 Affine Transformation Matrix transforms a Point Represented in an Affine Frame to (the same) Point (but) Represented in Global Frame Because...

Then, it's a just story of transforming a geometry!

Quiz \#2

- Go to https://www.slido.com/
- Join \#cg-hyu
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

All these concepts works even if the original frame is not global frame!

That is,

- 1) $\mathbf{M}_{\mathbf{1}} \mathbf{M}_{\mathbf{2}}$ transforms a geometry (represented in $\{0\}$) w.r.t. $\{0\}$

$$
-\mathrm{p}^{\{2\}}=\mathrm{p}_{\mathrm{l}}, \mathrm{p}^{\{1\}}=\mathrm{M}_{2} \mathrm{p}_{\mathrm{l}}, \mathrm{p}\{0\}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{p}_{\mathrm{l}}
$$

- 2) $\mathbf{M}_{1} \mathbf{M}_{\mathbf{2}}$ defines an $\{2\}$ w.r.t. $\{0\}$
- 3) $\mathbf{M}_{1} \mathbf{M}_{2}$ transforms a point represented in $\{2\}$ to the same point but represented in $\{0\}$

That is,

\{1\}

- 1) \mathbf{M}_{2} transforms a geometry (represented in $\left.\{\mathbf{1}\}\right)$ w.r.t. $\{\mathbf{1}\}$
- 2) $\mathbf{M}_{\mathbf{2}}$ defines an $\{2\}$ w.r.t. $\{1\}$
- 3) \mathbf{M}_{2} transforms a point represented in $\{2\}$ to the same point but represented in $\{\mathbf{1 \}}$

Interpretation of a Series of Transformations

Revisit: Order Matters!

- If T and R are matrices representing affine transformations,
- $\mathbf{p}^{\prime}=\mathrm{TR} \mathbf{p}$
- First apply transformation R to point \mathbf{p}, then apply transformation T to transformed point $\mathbf{R p}$
- $\mathbf{p}^{\prime}=\mathrm{RT} \mathbf{p}$
- First apply transformation T to point \mathbf{p}, then apply transformation R to transformed point Tp

Rotate then Translate

Translate then Rotate

Interpretation of Composite Transformations \#1

- An example transformation:

$$
\mathbf{M}=\mathbf{T}(x, 3) \cdot \mathbf{R}\left(-90^{\circ}\right)
$$

- This is how we've interpreted so far:
- R-to-L: Transforms w.r.t. global frame

Interpretation of Composite Transformations \#2

- An example transformation:

$$
\mathbf{M}=\mathbf{T}(x, 3) \cdot \mathbf{R}\left(-90^{\circ}\right)
$$

- Another way of interpretation:
- L-to-R: Transforms w.r.t. local frame

Interpretation of a Series of Transformations \#1

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

Interpretation of a Series of Transformations \#1

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

\{4\}

Standing at $\{4\}$, observing p

Interpretation of a Series of Transformations \#1

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

\{1\}

Interpretation of a Series of Transformations \#1

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

Interpretation of a Series of Transformations \#1

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

Interpretation of a Series of Transformations \#1

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

Interpretation of a Series of Transformations \#2

- $\mathrm{p}^{\prime}=\left[\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}\right.$

\{3\}
\{4\}

Interpretation of a Series of Transformations \#2

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

\{2\}

\{4\}

Standing at $\{0\}$, observing p^{\prime} $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{p}$

Interpretation of a Series of Transformations \#2

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

\{1\}

$$
\begin{aligned}
& \text { Standing at }\{0\} \text {, observing } p^{\prime} \\
& \mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{p}
\end{aligned}
$$

\{4\}

Interpretation of a Series of Transformations \#2

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

Interpretation of a Series of Transformations \#2

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

Left \& Right Multiplication

- Thinking it deeper, we can see:
- $\mathbf{p}^{\prime}=\mathbf{R T p}$ (left-multiplication by R)
- (R-to-L) Apply T to a point p w.r.t. global frame.
- Apply R to a point Tp w.r.t. global frame.
- $\mathbf{p}^{\prime}=\mathbf{T R p}$ (right-multiplication by R)
- (L-to-R) Apply T to a point p w.r.t. local frame.
- Apply R to a point Tp w.r.t local frame.

[Practice] Interpretation of Composite Transformations

- Just start from the previous lecture code "[Practice] OpenGL Trans. Functions".
- Differences are:

```
def drawFrame():
    glBegin(GL_LINES)
    glColor3ub(255, 0, 0)
    glVertex3fv(np.array([0.,0.,0.]))
    glVertex3fv(np.array([1.,0.,0.]))
    glColor3ub(0, 255, 0)
    glVertex3fv(np.array([0.,0.,0.]))
    glVertex3fv(np.array([0.,1.,0.]))
    glColor3ub(0, 0, 255)
    glVertex3fv(np.array([0.,0.,0]))
    qlVertex3fv(np.array([0.,0.,1.]))
    glEnd()
```


[Practice] Interpretation of Composite Transformations

```
def render(camAng):
    glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)
    glEnable(GL_DEPTH_TEST)
    glLoadIdentity()
    glOrtho(-1,1, -1,1, -1,1)
    gluLookAt(.1*np.sin(camAng),.1,.1*np.cos(camAng), 0,0,0, 0,1,0)
    # draw global frame
    drawFrame()
    # 1) p'=TRp
    glTranslatef(.4, .0, 0)
    drawFrame() # frame defined by T
    glRotatef(60, 0, 0, 1)
    drawFrame() # frame defined by TR
    # # 2) p'=RTp
    # glRotatef(60, 0, 0, 1)
    # drawFrame() # frame defined by R
    # qlTranslatef(.4, .0, 0)
    # drawFrame() # frame defined by RT
    drawTriangle()
```


Quiz \#3

- Go to https://www.slido.com/
- Join \#cg-hyu
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Rendering Pipeline

Rendering Pipeline

- A conceptual model that describes what steps a graphics system needs to perform to render a 3D scene to a 2D image.
- Also known as graphics pipeline.

Rendering Pipeline

Rendering Pipeline

Vertex Processing

Set vertex
positions

Transformed
vertices

glVertex3fv $\left(p_{1}\right)$
glVertex3fv $\left(p_{2}\right)$
glVertex3fv $\left(p_{3}\right)$
glMultMatrixf(\mathbf{M}^{T})
glVertex3fv $\left(p_{1}\right)$
glVertex3fv $\left(p_{2}\right)$
glVertex3fv $\left(p_{3}\right)$
...or
glVertex3fv(Mp_{1})
glVertex3fv($\mathbf{M p}_{2}$)
glVertex3fv($\mathbf{M p}_{3}$)

Vertex positions in
2D viewport

Then what we have to do are...
2. Placing the "camera"
3. Selecting a "lens"
4. Displaying on a "cinema screen"

In Terms of CG Transformation,

- 1. Placing objects
\rightarrow Modeling transformation
- 2. Placing the "camera"
\rightarrow Viewing transformation
- 3. Selecting a "lens"
\rightarrow Projection transformation
- 4. Displaying on a "cinema screen"
\rightarrow Viewport transformation
- All these transformations just work by matrix multiplications!

Vertex Processing (Transformation Pipeline)

Object space

Translate, scale, rotate, ... any affine transformations (What we've already covered in prev. lectures)

World space

Vertex Processing (Transformation Pipeline)

Object space

Modeling transformation

World space

Vertex Processing (Transformation Pipeline)

Modeling Transformation

Modeling Transformation

- Geometry would originally have been in the object's local coordinates;
- Transform into world coordinates is called the modeling matrix, M_{m}
- Composite affine transformations
- (What we've covered so far!)

Translate, rotate, scale, ... (Affine transformation)
\mathbf{M}_{m}

World space

Wheel object space

local coordinates

Cab object space

Container object space

- Lab in this week:
- No lab this week, but the assignment will be handed out with extended due.
- Next lecture:
- 6 - Viewing, Projection
- Acknowledgement: Some materials come from the lecture slides of
- Prof. Jinxiang Chai, Texas A\&M Univ., http://faculty.cs.tamu.edu/jchai/csce441 2016spring/lectures.html

