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Topics Covered

• Coordinate System & Reference Frame

• Meanings of an Affine Transformation Matrix

• Interpretation of a Series of Transformations

• Rendering Pipeline

– Vertex Processing

• Modeling transformation



Coordinate System & Reference Frame

• Coordinate system

– A system which uses one or more 

numbers, or coordinates, to 

uniquely determine the position of 

points.

• Reference frame

– Abstract coordinate system + 

physical reference points (to 

uniquely fix the coordinate 

system).



Coordinate System & Reference Frame

• Two terms are slightly different:

– Coordinate system is a mathematical concept, about a 

choice of “language” used to describe observations.

– Reference frame is a physical concept related to state of 

motion.

– You can think the coordinate system determines the way 

one describes/observes the motion in each reference 

frame.

• But these two terms are often mixed.



Global & Local Coordinate System(or Frame)

• global coordinate system (or global frame)

– A coordinate system(or frame) attached to the world.

– A.k.a. world coordinate system, fixed coordinate system

• local coordinate system (or local frame)

– A coordinate system(or frame) attached to a moving object.

https://commons.wikimedia.org/w
iki/File:Euler2a.gif

Blue: global coordinates
Red: local coordinates

https://commons.wikimedia.org/wiki/File:Euler2a.gif


Meanings of an Affine 

Transformation Matrix



1) A 4x4 Affine Transformation Matrix

transforms a Geometry w.r.t. Global Frame

M = 

{global frame}

Translate, rotate, scale, ...

Every vertex position (w.r.t. the global frame) 

of the cube is transformed to another position 

(w.r.t. the global frame)

Transformed geometry



Review: Affine Frame

• An affine frame in 3D space is defined by three 

vectors and one point

– Three vectors for x, y, z axes

– One point for origin



Global Frame

• A global frame is usually represented by

– Standard basis vectors for axes : 

– Origin point : 



Let’s transform a "global frame"

• Apply M to this "global frame", that is,

– Multiply M with the x, y, z axis vectors and the origin 

point of the global frame:

x axis vector y axis vector

z axis vector origin point



2) A 4x4 Affine Transformation Matrix

defines an Affine Frame w.r.t. Global Frame

M = 

{frame 1} 

(object's local frame)

{global frame}

→ M is the axis vectors and 

origin point of a new frame 

(represented in the global 

frame)

x axis 

vector

y axis 

vector origin 

point

z axis 

vector



Examples

This frame is 

defined by:

This frame is 

defined by:

x axis 

vector y axis 

vector

origin 

point
z axis 

vector

of the frame represented in 

the global frame
x axis 

vector
y axis 

vector

origin 

point

z axis 

vector



Quiz #1

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the 

above format to be checked for “attendance”.

https://www.slido.com/


3) A 4x4 Affine Transformation Matrix transforms

a Point Represented in an Affine Frame to (the

same) Point (but) Represented in Global Frame

{0}

(global frame)

p{1} = pl

Standing at {1}, 

observing p

(p{1}, pl is the position 

w.r.t local frame)

p{0}=Mpl

Standing at {0}, observing p

(p{0} is the position w.r.t. global frame)

M = {1}

pl = (1, 1, 0)



3) A 4x4 Affine Transformation Matrix transforms

a Point Represented in an Affine Frame to (the

same) Point (but) Represented in Global Frame

Because...

{0}

(global frame)

Let’s say we 

have the same 

cube object 

and its local 

frame 

coincident with 

the global 

frame

M = 

Then, it’s a just story of 

transforming a geometry!

pl = (1, 1, 0)

pl = (1, 1, 0)



Quiz #2

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the 

above format to be checked for “attendance”.

https://www.slido.com/


All these concepts works even if the original

frame is not global frame!

M1M2

{2}

{0}

(global frame)

M1

M2

{1}

pl = (1, 1, 0)



That is,

• 1) M1M2 transforms a geometry (represented in {0}) w.r.t. {0}

– p{2}=pl, p
{1}=M2pl, p{0}=M1M2pl

• 2) M1M2 defines an {2} w.r.t. {0}

• 3) M1M2 transforms a point represented in {2} to the same point but 
represented in {0}

M1M2

{2}

{0}

(global frame)

M1

M2

{1}

pl = (1, 1, 0)



That is,

• 1) M2 transforms a geometry (represented in {1}) w.r.t. {1}

• 2) M2 defines an {2} w.r.t. {1}

• 3) M2 transforms a point represented in {2} to the same 
point but represented in {1}

M1M2

{2}

{0}

(global frame)

M1

M2

{1}

pl = (1, 1, 0)



Interpretation of a Series of 

Transformations



Revisit: Order Matters!

• If T and R are matrices representing 
affine transformations,

• p' = TRp

– First apply transformation R to point p, 
then apply transformation T to transformed 
point Rp

• p' = RTp

– First apply transformation T to point p, 
then apply transformation R to transformed 
point Tp



Interpretation of Composite Transformations #1

• An example transformation:

• This is how we’ve interpreted so far:

– R-to-L: Transforms w.r.t. global frame

p

p'' = T(Rp)p' = Rp

M



Interpretation of Composite Transformations #2

• An example transformation:

• Another way of interpretation:

– L-to-R: Transforms w.r.t. local frame

M = T

M = TR

M = I
p'' = TRp

p

p' = Tp

M



Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p

M1
M2

M3

M4



Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p = (1, 1, 0)

Standing at {4}, observing p



Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p'

Standing at {3}, observing p

p' = M4 p

M4



Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p'

Standing at {2}, observing p

p' = M3 M4 p

M3

M4



Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p'

Standing at {1}, observing p

p' = M2 M3 M4 p

M3

M4

M2



Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p'

Standing at {0}, observing p

p' = M1 M2 M3 M4 p

M3

M4

M2M1



Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)

p



Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)

M1

p'

Standing at {0}, observing p'

p' = M1 p



Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)

M1
M2 p'

Standing at {0}, observing p'

p' = M1 M2 p



Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)

M1
M2

M3

p'

Standing at {0}, observing p'

p' = M1 M2 M3 p



Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p`

M1
M2

M3

M4

Standing at {0}, observing p'

p' = M1 M2 M3 M4 p



Left & Right Multiplication

• Thinking it deeper, we can see:

• p' = RTp (left-multiplication by R)

– (R-to-L) Apply T to a point p w.r.t. global frame.

– Apply R to a point Tp w.r.t. global frame.

• p' = TRp (right-multiplication by R)

– (L-to-R) Apply T to a point p w.r.t. local frame.

– Apply R to a point Tp w.r.t local frame.



[Practice] Interpretation of Composite

Transformations

• Just start from the previous lecture code "[Practice] 

OpenGL Trans. Functions".

• Differences are:
def drawFrame():

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([1.,0.,0.]))

glColor3ub(0, 255, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([0.,1.,0.]))

glColor3ub(0, 0, 255)

glVertex3fv(np.array([0.,0.,0]))

glVertex3fv(np.array([0.,0.,1.]))

glEnd()



[Practice] Interpretation of Composite

Transformations

def render(camAng):

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glLoadIdentity()

glOrtho(-1,1, -1,1, -1,1)

gluLookAt(.1*np.sin(camAng),.1,.1*np.cos(camAng), 0,0,0, 0,1,0)

# draw global frame

drawFrame()

# 1) p'=TRp

glTranslatef(.4, .0, 0)

drawFrame() # frame defined by T

glRotatef(60, 0, 0, 1)

drawFrame() # frame defined by TR

# # 2) p'=RTp

# glRotatef(60, 0, 0, 1)

# drawFrame()   # frame defined by R

# glTranslatef(.4, .0, 0)

# drawFrame()   # frame defined by RT

drawTriangle()



Quiz #3

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the 

above format to be checked for “attendance”.

https://www.slido.com/


Rendering Pipeline



Rendering Pipeline

• A conceptual model that describes what steps a 

graphics system needs to perform to render a 3D 

scene to a 2D image.

• Also known as graphics pipeline.



Rendering Pipeline

vertex 

processing
rasterization

fragment 

processing

output merging

: performs a 

sequence of vertex 

transformations

: assembles 

polygons & converts 

each polygon into a 

set of fragments 

(pixels)

: determines 

color of each 

fragment with 

light & texture



Rendering Pipeline

vertex 

processing
rasterization

fragment 

processing

output merging

→ We’ll see today & next lecture

What we’ve been done so far
: performs a 

sequence of vertex 

transformations



Vertex Processing

glVertex3fv(p1)

glVertex3fv(p2)

glVertex3fv(p3)

…or

glVertex3fv(Mp1)

glVertex3fv(Mp2)

glVertex3fv(Mp3)

glMultMatrixf(MT)

glVertex3fv(p1)

glVertex3fv(p2)

glVertex3fv(p3)

Set vertex 

positions

Transformed 

vertices

Vertex positions in 

2D viewport

M ?
Let’s think a “camera” 

is watching the “scene”.

Then what we have to do are…

2. Placing the “camera”

3. Selecting a “lens”

4. Displaying on a “cinema screen”

1. Placing objects



In Terms of CG Transformation,

• 1. Placing objects

→ Modeling transformation

• 2. Placing the “camera”

→ Viewing transformation

• 3. Selecting a “lens”

→ Projection transformation

• 4. Displaying on a “cinema screen”

→ Viewport transformation

• All these transformations just work by matrix multiplications!



Vertex Processing (Transformation Pipeline)

World space

Object space

Translate, scale, rotate, ... any affine transformations

(What we’ve already covered in prev. lectures)

Local coordinates

Global coordinates



Vertex Processing (Transformation Pipeline)

World space

Object space

Modeling transformation



Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Placing the “camera”



Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Viewing transformation



Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Selecting a “lens”

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)



Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Projection transformation

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)



Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Screen space

(Image space)

Displaying on a 

“cinema screen”

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)



Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Screen space

(Image space)

Viewport transformation

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)



Vertex Processing (Transformation Pipeline)

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection 

transformation

Viewport 

transformation

Viewing 

transformation

Modeling 

transformation

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)



Vertex Processing (Transformation Pipeline)

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection 

transformation

Viewport 

transformation

Viewing 

transformation

Modeling 

transformation

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

All these transformations just work 

by matrix multiplications!



Vertex Processing (Transformation Pipeline)

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection 

transformation

: Mpj

Viewport 

transformation

: Mvp

Viewing 

transformation

: Mv

Modeling 

transformation

: Mm

po ps

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

ps = Mvp Mpj Mv Mm po



Modeling Transformation

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Modeling 

transformation

: Mm

po

pw

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

pw = Mm po



Modeling Transformation

• Geometry would originally have been in the object’s local 
coordinates;

• Transform into world coordinates is called the modeling 
matrix, Mm

• Composite affine transformations

• (What we’ve covered so far!)

World space

Object space
Translate, rotate, scale, ...

(Affine transformation)po

pw

Mm



Mm
wheel

Mm
cab

Mm
container

Wheel object space

Cab object space

Container object space

World space
local coordinates

global coordinates



Next Time

• Lab in this week:

– No lab this week, but the assignment will be handed 

out with extended due.

• Next lecture:

– 6 - Viewing, Projection

• Acknowledgement: Some materials come from the lecture slides of

– Prof. Jinxiang Chai, Texas A&M Univ., http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html

http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html

