Computer Graphics

6 - Viewing, Projection

Yoonsang Lee
Spring 2020

Affine Matrix Iin Last Lepture

€y

0
O}.‘-‘éx

e, {0}
(global frame)

* 1) M;M, transforms a geometry (represented in {0}) w.r.t. {0}
— p¥=p, pt=Myp;, p=M;Myp,
* 2) M;M, defines an {2} w.r.t. {0}
« 3) M;M, transforms a point represented in {2} to the same point but
represented in {0}

Midterm Exam Announcement

* The midterm exam will be delayed until the offline
lecture begins.

* \When the offline lecture starts, the midterm exam
will be taken.

e So, we'll have a lecture and lab as usual in the 8th
week.

Topics Covered

* Rendering Pipeline
— Vertex Processing

* Viewing transformation
 Projection Transformation

* Viewport Transformation

Vertex Processing (Transformation Pipeline)

_ View space Screen space
Object space (Camera space) (Image space)
%Jl Y2
! Ui
Modeling Viewing Projection Viewport
transformation transformation transformation transformation

) O Y4 (1,1,)

< > ‘
vy i
T (-1,-1,-1) /

Canonical view volume
World space (Normalized device coordinates, NDC)

Viewing Transformation

View space Screen space

Object space (Camera space) (Image space)
ni Y2

A

» T éi o
%1

Viewing
transformation

(-1,-1,-1) / V

Canonical view volume
World space (Normalized device coordinates, NDC)

Recall that...

« 1. Placing objects
— Modeling transformation

« 2. Placing the “camera”
— Viewing transformation

« 3. Selecting a “lens”
— Projection transtformation

9

* 4. Displaying on a “cinema screen’
— Viewport transformation

Viewing Transformation

Ve 7
-e
x) \%/ View space
(Camera space)

Yuw pW Translate & rotate (Rigid
.7 transformation)
' M

Loy

.

World space

« Placing the camera and expressing all object vertices
from the camera's point of view

« Transformation from world to view space is traditionally
called the viewing matrix, M,

Viewing Transformation

* Placing the camera

* — How to set the camera’s position &
orientation?

* Expressing all object vertices from the camera's
point of view

 — How to define the camera’s coordinate
system (frame)?

1. Setting Camera’s Position & Orientation

« Many ways to do this
* One Intuitive way Is using:

« Eye point fve 2
— Position of the camera

Line of sight h up vector
» Look-at point s
point
— The target of the camera =Look-at point

* Up vector
— Roughly defines which direction is up

2. Defining Camera’s Coordinate System

* Glven eye point, look-at point, up vector, we can
get camera frame (P, U, V, W).
— For details, see 6-reference-viewing.pdf

Vv
W
. u
View space 'M

(Camera space) eye

eye!

| A<\
g

Zw

World space

Viewing Transformation Is the Opposite

Direction Vi gw
View space u VM

(Camera space) M eye

Ye

V< \

A
Z/

World space

Uy Uy Uy —U- Peye
Ug Uy Uz —V - Peye
wx wvy wz _W * peye

gluLookAt()

Lt e

[u&,a%,ag)

(up,., up,. Up,) o Grea J
b

gluLookAt (eye,.eye, eye,,at,,at,,at,,up,, up,,up,)
. creates a viewing matrix and right-multiplies the current
transformation matrix by it

C «— CM,

[Practice] gluLookAt()

import glfw

from OpenGL.GL import *
from OpenGL.GLU import *
import numpy as np

gCamAng = 0.
gCamHeight = .1

def render():
enable depth test (we'll see details later)
glClear (GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT)
glEnable (GL DEPTH TEST)

glLoadIdentity()

use orthogonal projection (we'll see details later)
glOrtho(-1,1, -1,1, =-1,1)

rotate "camera" position (right-multiply the current matrix by viewing
matrix)

try to change parameters

glulLookAt(.l*np.sin(gCamAng) ,gCamHeight, .1*np.cos(gCamAng), 0,0,0, 0,1,0)

drawFrame ()

glColor3ub (255, 255, 255)
drawTriangle ()

def

def

drawFrame () :
glBegin (GL_LINES)
glColor3ub (255, 0, 0)

glVertex3fv(np.array([O.
glVertex3fv(np.array([1.

glColor3ub (0, 255, 0)

glVertex3fv(np.array([O.
glVertex3fv(np.array([O.

glColor3ub (0, 0, 255)
glVertex3fv(np.array ([0
glVertex3fv(np.array ([0
glEnd ()

drawTriangle () :
glBegin (GL TRIANGLES)

-1))
/0.,0.1))

~
(@]

~
(@]

/0.,0.1))
-1))

~
[E

~
(@]

-,0.,01))
.,0.,1.1))

glVertex3fv(np.array([.0,.5,0.1))
glVertex3fv(np.array([.0,.0,0.1))
glVertex3fv(np.array([.5,.0,0.1))

glEnd()

def key callback(window, key, scancode, action,
mods) :
global gCamAng, gCamHeight

if action==glfw.PRESS or action==glfw.REPEAT:

if key==glfw.KEY 1:

gCamAng += np.radians(-10)
elif key==glfw.KEY 3:

gCamAng += np.radians(10)
elif key==glfw.KEY 2:

gCamHeight +=

.1

elif key==glfw.KEY W:

gCamHeight += -.

1

def main():
if not glfw.init():
return
window =
glfw.create window (640,640, 'gluLookAt ()",
None ,None)
if not window:
glfw.terminate ()
return
glfw.make context current (window)
glfw.set key callback(window,
key callback)

while not
glfw.window should close(window) :
glfw.poll events()
render ()
glfw.swap buffers(window)

glfw.terminate ()

LA

if name == " main

main ()

Moving Camera vs. Moving World

« Actually, these are two equivalent operations
« Translate camera by (1, 0, 2) == Translate world by (-1, 0, -2)

» Rotate camera by 60° about y ==Rotate world by -60° about y

Moving Camera vs. Moving World

« Thus you also can use glRotate*() or glTranslate*()
to manipulate the cameral

 Using gluLookAt() is just one option of many other
choices to manipulate the camera.

« By default, OpenGL places a
camera at the origin pointing In

negative z direction. /??\

Modelview Matrix

* As we’ve just seen, moving camera & moving
world are equivalent operations.

* That’s why OpenGL combines a viewing matrix M,
and a modeling matrix M, into a modelview matrix
M=M M,

Quiz #1

* Go to https://www.slido.com/
 Join #cg-hyu
* Click “Polls”

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked for “attendance”.

https://www.slido.com/

Projection Transformation

View space Screen space

Object space (Camera space) (Image space)
ni Y2

A

» T éi o
%1

Projection
transformation

) O Y4 (1,1,1)
7 A
T (-1,-1,-1) /

Canonical view volume
World space (Normalized device coordinates, NDC)

Recall that...

« 1. Placing objects
— Modeling transformation

» 2. Placing the “camera”
— Viewing transformation (covered in the last class)

« 3. Selecting a “lens”
— Projection transformation

« 4. Displaying on a “cinema screen”
— Viewport transformation

Review:Normalized Device Coordinates

« Remember that you could draw the triangle anywhere
In a 2D square ranging from [-1, -1] to [1, 1].

B ' Hello World

 Called normalized device
coordinates (NDC)

* Also known as canonical
view volume

Canonical View “Volume”

(1,1, 1)

Actually, a canonical view volume is a 3D cube
ranging from [-1,-1,-1] to [1,1,1] in OpenGL
— Its coordinate system is NDC

-1,-1,-1]

NDCS M|

* Its xy plane i1s a 2D “viewport”

* Note that NDC in OpenGL is a left-handed
coordinate system
— Viewing direction in NDC : +z direction (—1,-1,-1)

(1,1,13

* But OpenGL’s projection functions change the NDCS |
hand-ness — Thus view, world, model spaces use
right-handed coordinate system

— Viewing direction in view space : -z direction

Canonical View Volume

* OpenGL only draws objects inside
the canonical view volume

(1,1,13

(-1,-1,-1)

— To draw objects only in the camera’s ~ "°® “—"" X
view

— Not to draw objects too near or too far
from the camera

Do we always have to use the cube of size 2
as a view volume?

* No. You can set any size visible volume and draw
objects inside It.
— Even you can use “frustums’ as well as cuboids

* Then everything in the visible volume is mapped
(projected) into the canonical view volume.

* Then 3D points in the canonical view volume are
projected onto its xy plane as 2D points.

* — Projection transformation

Projection in General

* General definition:

* Transforming points In n-space to m-space (m<n)

Projection in Computer Graphics

« Mapping 3D coordinates to 2D screen —

* Two stages:
— Map an arbitrary view volume to a canonical view
volume

_ o o
Map-3D pe||:|ts Hh-the-canonical view volume onto
'FES %yl pllane ’BHE "l“e st ||ee_ellz "al es-of pel HALS

« Two common projection methods
— Orthographic projection
— Perspective projection

Orthographic(Orthogonal) Projection

* View volume : Cuboid (Z! < HA)

 Orthographic projection : Mapping from a cuboid view
volume to a canonical view volume
— Combination of scaling & translation

— “Windowing” transformation

tochange hand-ness(to . ———{righffopHar)

flip positive z direction)

(left, bottom-hear) e X y

Windowing Transformation

Transformation that maps a point (p,, p,) in a
rectangular space from (x;, y,) to (X, Y;,) to a point
(P, py’) in a rectangular space from (x,’, y,’) to
%05 Yn')

A
) Y
(px py) (Xp» Yn)) i
° D’ 1 0 a % 0 O [1 0 —x Py
(xb.)’[) X ' ’ ’
=10 1 Yn—Yi 0 1 —y|P
translate p = X1, Y — YD py : 0 Yn—U1 0 1y
1 0 0 1 0 o 1/10 0 1
X‘; X‘;
vl [z, —x; 0 TyTH—T, Ty]
scale (p , ’) pX, Tp—T] xrp—I] pX
x> PyJ) | = Y=Vl YYR—YnY
VA e Py 0 i T, N
X =X5 Y =YD o 1 ! ' 1
0 0 1
translate &) - -

X X

Orthographic Projection Matrix

« By extending the matrix to 3D and substituting

— X,=right, x=left, x,’=1, x,’=-1
— y,=top, y,=bottom, y,’=1, y,’=-1
— z,=-far, z=-near, z,’=1, z,/=-1

M T 9 0 0 right-+left 7

orth ™ | right—left right—left

0 9 0 top+botiom

top—bottom top—bottom

92 ar+near
0 0 1

far—near far—near

0 0 0 1 i

Examples of Orthographic Projection

R Orthographic and isometric projections of an object
S g I 'L O - _::_:Z.‘
Front — -
" - top view t
| 5
\
‘ h. . 3-dimensional isometric projection
: | y 4 |
. front view side view
TOp Slde 2-dimensional orthographic projection ® 2010 Encyclopzedia Britannica, Inc.

An object always stay the same size, no matter its distance from the viewer.

Properties of Orthographic Projection

v

N |

« Not realistic looking uwmﬂﬂ m

« Good for exact measurement LU me1

* Most often used in CAD, architectural drawmgs,ngtc. V\/I:dére
taking exact measurement Is important

 Affine transformation

- parallel lines remain parallel
- ratios are preserved
- angles are often not preserved

glOrtho()

glOrtho(left, right, bottom, top, zNear, zFar)

. Creates a orthographic projection matrix and
right-multiplies the current transformation matrix
by It

Sign of zNear, zFar:

— positive value: the plane is in front of the camera

]]] (right,top,-far)
— negative value: the plane is behind the camera. Oy

¢ C CNIorth y

°
(left, bottom|-near)

X

[Practice] glOrtho

import glfw

from OpenGL.GL import ¥*
from OpenGL.GLU import ¥*
import numpy as np

gCamAng = 0.
gCamHeight = 1.

draw a cube of side 1,
def drawUnitCube () :
glBegin (GL QUADS)

centered at the origin.

glVertex3f(0.5, 0.5,-0.5)
glVertex3f(-0.5, 0.5,-0.5)
glvertex3f(-0.5, 0.5, 0.5)
glvertex3f(0.5, 0.5, 0.5)
glvVvertex3f(0.5,-0.5, 0.5)
glvVertex3f(-0.5,-0.5, 0.5)
glvVertex3f(-0.5,-0.5,-0.5)
glvertex3f(0.5,-0.5,=-0.5)
glVertex3f(0.5, 0.5, 0.5)
glVertex3f(-0.5, 0.5, 0.5)
glVertex3f(-0.5,-0.5, 0.5)
glVertex3f(0.5,-0.5, 0.5)
glVertex3f(0.5,-0.5,-0.5)
glVertex3f(-0.5,-0.5,-0.5)
glVertex3f(-0.5, 0.5,-0.5)
glVertex3f(0.5, 0.5,-0.5)

def

def

glVertex3f(-0.5, 0.5, 0.5)
glVertex3f(-0.5, 0.5,-0.5)
glVertex3f(-0.5,-0.5,-0.5)
glVertex3f(-0.5,-0.5, 0.5)
glVertex3f(0.5, 0.5,-0.5)
glVertex3f(0.5, 0.5, 0.5)
glVertex3f(0.5,-0.5, 0.5)
glVertex3f(0.5,-0.5,-0.5)
glEnd()

drawCubeArray () :

for i in range(5):
for j in range(5):

for k in range(5):
glPushMatrix ()
glTranslatef (i,3,-k-1)
glScalef(.5,.5,.5)
drawUnitCube ()
glPopMatrix ()

drawFrame () :
glBegin (GL LINES)

glColor3ub (255, 0, 0)
glvVertex3fv(np.array([0.,0.,
glvVertex3fv(np.array([1.,0.,
glColor3ub (0, 255, 0)
glVertex3fv(np.array([0.,0.,
glvVertex3fv(np.array([0.,1.,
glColor3ub (0, 0, 255)
glVertex3fv(np.array([0.,0
glVertex3fv(np.array([0.,0
glEnd()

(@)

-1))
-1))

(@)

(@)

-1))
-1))

O

-,01))
-,1.1))

def render():
global gCamAng, gCamHeight

glClear (GL_COLOR BUFFER BIT|GL DEPTH BUFFER BIT)

glEnable (GL DEPTH TEST)

draw polygons only with boundary edges
glPolygonMode (GL_FRONT AND BACK, GL LINE)

glLoadIdentity()

test other parameter values
near plane: 10 units behind the camera
far plane: 10 units in front of
the camera
glOortho(-5,5, -5,5, -10,10)

gluLookAt (1*np.sin (gCamAng) ,gCamHeight, 1*np.cos (

gCamAng), 0,0,0, 0,1,0)

drawFrame ()
glColor3ub (255, 255, 255)

drawUnitCube ()

test
drawCubeArray ()

def key callback(window, key, scancode, action,
mods) :
global gCamAng, gCamHeight
if action==glfw.PRESS or
action==glfw.REPEAT:
if key==glfw.KEY 1:
gCamAng += np.radians(-10)
elif key==glfw.KEY 3:
gCamAng += np.radians(10)
elif key==glfw.KEY 2:
gCamHeight += .1
elif key==glfw.KEY W:
gCamHeight += -.1

def main():
if not glfw.init():
return
window =
glfw.create window (640,640, ‘glOrtho() ",
None,None)
if not window:
glfw.terminate ()
return
glfw.make context current (window)
glfw.set key callback(window, key callback)

while not glfw.window should close (window) :
glfw.poll events()
render ()
glfw.swap buffers(window)

glfw.terminate ()

m .

if name == " main
main ()

Quiz #2

* Go to https://www.slido.com/
 Join #cg-hyu
* Click “Polls”

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked for “attendance”.

https://www.slido.com/

;' |
\

Perspective Effects [

\
. Distant objects become g
small.

=

Vanishing point: The point or points to
which the extensions of parallel lines appear
to converge in a perspective drawing

1/

v
R e-paeint twa-point ihree-point
perspective perspective perspective

Perspective Projection

* View volume : Frustum (2 54
 — “Viewing frustum”

 Perspective projection : Mapping from a viewing
frustum to a canonical view volume

projection matrix
maps frustum

to canonical
viewing volume

viewing
frustum
t

canonical
viewing

volume T~

© www.scratchapixel.com

Why this mapping make “perspective”?

Original 3D scene Red: viewing frustum, Blue: objects

An Example of Perspective Projection

After perspective projection

An Example of Perspective Projection

The camera view

1

Let’s first consider
3D View Frustum—2D Projection Plane

 Consider the projection of a 3D point on the
camera plane

Perspective projection

The size of an object on the screen is
inversely proportional to its distance
projection from camera
plane

v, 2)

similar triangles:

y _ Y
d 7
y = —dy/z

Cornell CS4620 Fall 2008 « Lecture 8 © 2008 Steve Marschner 43

Homogeneous coordinates revisited

* Perspective requires division
— that is not part of affine transformations
— In affine, parallel lines stay parallel
* therefore not vanishing point
* therefore no rays converging on viewpoint

* “True” purpose of homogeneous coords:
projection

Cornell CS4620 Fall 2008 « Lecture 8 © 2008 Steve Marschner <44

Homogeneous coordinates revisited

 Introduced w = 1 coordinate as a placeholder

_— i —x-
y Y
I
<. 1

— used as a convenience for unifying translation with
linear transformation

« Can also allow arbitrary w

o Ea All scalar multiples of a 4-vector are
Y wy equivalent
m~/
~ wz
1 W

Cornell CS4620 Fall 2008 « Lecture 8 © 2008 Steve Marschner 45

Perspective projection

projection
plane

O, 2)

Ed [—dxz/z] [dz | d 0 0 0]
y'{ = —dy/z| ~|dyl =10 d 0 O g
L1] =2 oo -1 o]]

Cornell CS4620 Fall 2008 « Lecture 8 © 2008 Steve Marschner *4g

Perspective Projection Matrix

* This 3D — 2D projection example gives the basic idea of
perspective projection.

« What we really have to do is 3D — 3D, View Frustum —
Canonical View Volume.

 For details for this process, see 6-reference-projection.pdf

Yy z=rfar
(2 0 0\ 4 Z=near |
el ~[right, top,near)
0o = W 0
o M — “(left, bottom,-near)
perS_ 0 0 —(f+4n) —2fn
F—n f—n P
\0 0 -1 0)

glFrustum()

 glFrustum(left, right, bottom, top, near, far)

* near, far: The distances to the near and far depth clipping planes. Both
distances must be positive.

 : Creates a perspective projection matrix and right-
multiplies the current transformation matrix by it

e C—CM

pers

Sesgilacan ™~ [right, top,-near]

< (left, bottom,-near)

- X

gluPerspective()

 gluPerspective(fovy, aspect, zNear, zFar)

» fovy: The field of view angle, in degrees, in the y-direction.

» aspect: The aspect ratio that determines the field of view in the x-
direction. The aspect ratio is the ratio of x (width) to y (height).

* : Creates a perspective projection matrix and right-
multiplies the current transformation matrix by it

e C«—CM

pers
aspect=wh

def render():
global gCamAng, gCamHeight

[P raCti Ce] glClear (GL COLOR BUFFER BIT|GL DEPTH BUFFER BIT)
glEnable (GL DEPTH TEST)

g|FI’UStum(), glPolygonMode (GL FRONT AND BACK, GL LINE)
gIUPerSpeCti glLoadIdentity ()

Ve() # test other parameter values
glFrustum(-1,1, -1,1, .1,10)
glFrustum(-1,1, -1,1, 1,10)

test other parameter values
gluPerspective (45, 1, 1,10)

test with this line
gluLookAt (5*np.sin (gCamAng) ,gCamHeight, 5*np.cos (gCam
Ang), 0,0,0, 0,1,0)

drawFrame ()
glColor3ub (255, 255, 255)

drawUnitCube ()

test
drawCubeArray ()

Quiz #3

* Go to https://www.slido.com/
 Join #cg-hyu
* Click “Polls”

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked for “attendance”.

https://www.slido.com/

Viewport Transformation

Object space
H Y2

A

» I éi T
<1

World space

View space
(Camera space)

(-1,-1,-1)

Screen space
(Image space)

Viewport
transformation

Canonical view volume

(Normalized device coordinates, NDC)

Recall that...

« 1. Placing objects
— Modeling transformation

» 2. Placing the “camera”
— Viewing transformation

« 3. Selecting a “lens”
— Projection transtformation

9

* 4. Displaying on a “cinema screen’
— Viewport transformation

Viewport Transformation

Canonical view volume

(looking down +z direction) Screen space
Y a Viewport (Image space)
1<z<1 1 transformation 0<z<l1
(z range of 4 Pe : My, v Ps (default
canonical > depth buffer
view volume)'1 - range)
-1

* Viewport: a rectangular viewing region of screen

« So, viewport transformation is also a kind of
windowing transformation.

Viewport Transformation Matrix

* In the windowing transformation matrix,

* By substituting X, X,, X;,’, ... with corresponding
variables in viewport transformation,

—width width 7

Myp = 2 heio ht) hetght Lmin
0 0 3 5

i 0 0 0 1 |

glViewport()

« glViewport(xmin, ymin, width, height)
— Xmin, ymin, width, height: specified in pixels

« : Sets the viewport

— This function does NOT explicitly multiply a viewport
matrix with the current matrix.

— Viewport transformation is internally done in
OpenGL, so you can apply transformation matrices
starting from a canonical view volume, not a screen
space.

« Default viewport setting for (xmin, ymin, width,
height) is (0, 0, window width, window height).
— If you do not call glViewport(), OpenGL uses this
default viewport setting.

[Practice] glViewport()

def main|() :

oL

glfw.make context current (window)
glViewport (100,100,200,200)
...

Next Time

* Lab in this week:
— Lab assignment 6

* Next lecture:
— 7 - Hierarchical Modeling, Mesh

* Class Assignment #1
— Due: 23:59, May 10, 2020

Acknowledgement: Some materials come from the lecture slides of
— Prof. Jinxiang Chai, Texas A&M Univ., http://faculty.cs.tamu.edu/jchai/csce441 2016spring/lectures.html
— Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cqi
— Prof. Steve Marschner, Cornell Univ., http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html
http://calab.hanyang.ac.kr/cgi-bin/cg.cgi
http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

