
Computer Graphics

9 – Orientation & Rotation

Yoonsang Lee

Spring 2020

Some Notice

• It seems like that we need to keep online lectures /

labs until the end of the semester.

• We're considering taking the midterm exam in 1st

week of June, but not yet determined.

– The scope would be Lecture 2 ~7.

What we’ve done so far

• Lecture 3 – 5 (Transformation)

• : Movement & placement

• Lecture 5 – 6 (Vertex Processing)

• : Mapping to 2D screen

• Lecture 7 – 8 (Mesh, Lighting & Shading)

• : Appearance

• Lecture 9 – 10 (Orientation & Rotation, Animation)

• : Movement & placement

Topics Covered

• Orientation vs. Rotation

• Degrees of freedom

• 2D orientation & rotation representations

– Using 1D angle

– Rotation matrices (2x2)

• 3D orientation & rotation representations

– Euler angles

– Axis-angle (Rotation vector)

– Rotation matrices

– Unit quaternions

Orientation vs. Rotation,

Degrees of freedom

Orientation vs. Rotation

• Rotation

– Circular movement

• Orientation

– The state of being oriented

– Given a coordinate system, the orientation of an object

can be represented as a rotation from a reference pose

Analogy

• (point : vector) is similar to (orientation : rotation)

– Both represent a sort of (state : movement)

Reference coordinate system

Analogy

• (point : vector) is similar to (orientation : rotation)

– Both represent a sort of (state : movement)

Reference coordinate system

point : the 3d location of the object

vector : translational movement

Analogy

• (point : vector) is similar to (orientation : rotation)

– Both represent a sort of (state : movement)

Reference coordinate system

orientation : the 3d orientation of the object

rotation : circular movement

Analogy

• Point & vector

– (point) + (point) → (UNDEFINED)

– (vector) ± (vector) → (vector)

– (point) ± (vector) → (point)

– (point) - (point) → (vector)

• Orientation & rotation

– (orientation) (+) (orientation) → (UNDEFINED)

– (rotation) (±) (rotation) → (rotation)

– (orientation) (±) (rotation) → (orientation)

– (orientation) (-) (orientation) → (rotation)

Not vector addition & subtraction

Degrees of Freedom (DOFs)

• The number of independent parameters that

define a unique configuration

Translation along one

direction Rotation about an axis

: 1 DOF
: 1 DOF

Translation on a plane

Rotation about two axes

Translation in 3D space
Rotation in 3D space

: 2 DOFs

: 2 DOFs

: 3 DOFs
: 3 DOFs

Any rigid motion in 3D

space

: 6 DOF

Quiz #1

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

2D & 3D orientation & rotation

representations

2D Rotation

0

2



2









or



2D rotation is 1 DOF

movement.

A single number (angle θ)

can represents any 2D

rotation.

2D Orientation

0

2



2









or



The single number

(angle θ) can represent

2D orientation, but it's

not so good for

orientation.

2D Orientation

Although the motion is continuous,

its representation could be discontinuous

0

2



2









or

)(t 





Time

2D Orientation

Many-to-one correspondences

between 2D orientations and their

representations

0

2



2









or

)(t






Time

Extra Parameter



),(yx

X

YUsing more
parameters than
DOFs can be a
solution.

Extra Parameter



),(yx

X

Y








 





cossin

sincos

2x2 Rotation matrix is one

of the methods using extra

parameters

There are
• No discontinuity
• No many-to-one correspondence
for each element of 2x2 rotation matrix!

2D Rotation and Orientation

• 2D Rotation

– The consequence of any 2D rotational movement can be

uniquely represented by a turning angle

• 2D Orientation

– The non-singular parameterization of 2D orientations requires

extra parameters

• E.g.) 2x2 rotation matrices

X

Y

Z

X 

Y 

Z 

3D Rotation

• Given two arbitrary orientations of a rigid object,

3D Rotation

• We can always find a fixed axis of rotation and

an angle about the axis

v̂



Euler’s Rotation Theorem

In other words,

• Arbitrary 3D rotation equals to one rotation

around an axis

• Any 3D rotation leaves one vector unchanged

The general displacement of a rigid body with

one point fixed is a rotation about some axis

Leonhard Euler (1707-1783)

Describing 3D Rotation & Orientation

• Describing 3D rotation & orientation is more

complicated than 2D.

• Many ways to do it

– Euler angles

– Rotation vector (Axis-angle)

– Rotation matrices

– Unit quaternions

Euler Angles

• Express any arbitrary 3D rotation using three

rotation angles about three principle axes

– x, y, z axes

Example: ZXZ Euler Angles

• 1. Rotate about Z-axis by α

• 2. Rotate about X-axis of the new frame by β

• 3. Rotate about Z-axis of the new frame by γ

https://commons.wikimedia.org/w
iki/File:Euler2a.gif

y

z

x

α α

β

γ
α

β

R=
α α
α α β β

β β

γ γ
γ γ

R= Rz(α) Rx(β) Rz(γ)

1. 2. 3.

https://commons.wikimedia.org/wiki/File:Euler2a.gif

Example: Yaw-Pitch-Roll Convention

(ZYX Euler Angles)

• Common for describing the

orientation of aircrafts

• 1. Rotate about Z-axis by yaw

angle

• 2. Rotate about Y-axis of the new

frame by pitch angle

• 3. Rotate about X-axis of the new

frame by roll angle

z

y

x

R= Rz(yaw) Ry(pitch) Rx(roll)

Recall: Rotation Matrix in 3D

b
b

Euler Angles

• Possible 12 combinations

– XYZ, XYX, XZY, XZX

– YZX, YZY, YXZ, YXY

– ZXY, ZXZ, ZYX, ZYZ

[Practice] Euler Angles Online Demo

• Try to change yaw, pitch, roll angles

http://www.ctralie.com/Teaching/COMPS
CI290/Materials/EulerAnglesViz/

http://www.ctralie.com/Teaching/COMPSCI290/Materials/EulerAnglesViz/

Gimbal

• Hardware
implementation of Euler
angles

• Used in

– Camera systems: to
stabilize the camera
movement

– Inertial navigation
systems (INS): to get the
current orientation of
aircrafts or ships

Gimbal Lock
• One potential problem that Euler angles can suffer from is ‘gimbal

lock’
• This results when two axes effectively line up, resulting in a

temporary loss of a degree of freedom

• Euler angles have singularities, i.e., it loses DoFs (can’t move in a
certain direction) at some configurations

Normal situation.
The plane can rotate
in any directions

Gimbal lock:
two out of the three
gimbals are in the same
plane, one DoF is lost

34GSCT, KAIST

[Practice] Gimbal Lock

• Make gimbal lock by aligning two of three rotation axes

– Set pitch to 90 degrees

http://www.ctralie.com/Teaching/COMPS
CI290/Materials/EulerAnglesViz/

http://www.ctralie.com/Teaching/COMPSCI290/Materials/EulerAnglesViz/

[Practice] Euler Angles in OpenGL

• Start with the practice code from the previous

lecture (8-Lighting&Shading).

• Just replace render() function

ZYX Euler angles

t = glfw.get_time()

xang = t

yang = np.radians(30)

zang = np.radians(30)

M = np.identity(4)

Rx = np.array([[1,0,0],

[0, np.cos(xang), -np.sin(xang)],

[0, np.sin(xang), np.cos(xang)]])

Ry = np.array([[np.cos(yang), 0, np.sin(yang)],

[0,1,0],

[-np.sin(yang), 0, np.cos(yang)]])

Rz = np.array([[np.cos(zang), -np.sin(zang), 0],

[np.sin(zang), np.cos(zang), 0],

[0,0,1]])

M[:3,:3] = Rz @ Ry @ Rx

glMultMatrixf(M.T)

The same ZYX Euler angles with OpenGL functions

glRotate(30, 0,0,1)

glRotate(30, 0,1,0)

glRotate(np.degrees(xang), 1,0,0)

glScalef(.25,.25,.25)

draw cubes

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, (.5,.5,.5,1.))

drawCube_glDrawArray()

glTranslatef(2.5,0,0)

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, (1.,0.,0.,1.))

drawCube_glDrawArray()

glTranslatef(-2.5,2.5,0)

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, (0.,1.,0.,1.))

drawCube_glDrawArray()

glTranslatef(0,-2.5,2.5)

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, (0.,0.,1.,1.))

drawCube_glDrawArray()

glDisable(GL_LIGHTING)

def render():

global gCamAng, gCamHeight

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER

_BIT)

glEnable(GL_DEPTH_TEST)

glMatrixMode(GL_PROJECTION)

glLoadIdentity()

gluPerspective(45, 1, 1,10)

glMatrixMode(GL_MODELVIEW)

glLoadIdentity()

gluLookAt(5*np.sin(gCamAng),gCamHeight,5*np

.cos(gCamAng), 0,0,0, 0,1,0)

draw global frame

drawFrame()

glEnable(GL_LIGHTING)

glEnable(GL_LIGHT0)

glEnable(GL_RESCALE_NORMAL)

set light properties

lightPos = (4.,5.,6.,1.)

glLightfv(GL_LIGHT0, GL_POSITION,

lightPos)

ambientLightColor = (.1,.1,.1,1.)

diffuseLightColor = (1.,1.,1.,1.)

specularLightColor = (1.,1.,1.,1.)

glLightfv(GL_LIGHT0, GL_AMBIENT,

ambientLightColor)

glLightfv(GL_LIGHT0, GL_DIFFUSE,

diffuseLightColor)

glLightfv(GL_LIGHT0, GL_SPECULAR,

specularLightColor)

Quiz #2

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Rotation Vector (Axis-Angle)

• Rotation vector (3 parameters)

• Axis-Angle (1+2 parameters)

v̂



),,(ˆ zyx vv 

)ˆ,(v

anglescalar :

or)(unit vect axisrotation : ˆ



v

3D Orientation

• Euler angles and rotation vector use 3 parameters.

• Expressing 3D orientation using 3 parameters has problems:

• Euler angles

– Discontinuity (or many-to-one correspondences)

– Gimbal lock

• Rotation Vector (Axis-Angle)

– Discontinuity (or many-to-one correspondences)




0

2









or

)(t







Time 





Time

3D Orientation

• To avoid these problems, we need more parameters than
DOFs

– Rotation matrices

– Unit quaternions

• But Euler angles is still meaningful because

– It’s the most common way to implement actuated 3 DOF rotational
joints in real world.

– No need to "normalize" the numbers.

Rotation Matrices

• Rotation in 3D space can be represented as 3x3 matrix:

R=
α α
α α β β

β β

γ γ
γ γ

Rotation matrix

about x, y, z axis

Rotation matrix from

ZXZ Euler angles

Meaning of Rotation Matrix

• A rotation matrix defines

– Orientation of new rotated frame or,

– Rotation from a global frame to be that rotated frame

R

Mathematical Properties of Rotation Matrix

• A rotation matrix is an orthogonal matrix with

determinant 1

– Sometimes it is called special orthogonal matrix

– A set of rotation matrices of size 3 forms a special

orthogonal group, SO(3)

1.

2.

• For details, see 9-reference-rotmat-properties.pdf

Geometric Properties of Rotation Matrix

• RT is an inverse rotation of R

– Because,

• R1R2 is a rotation matrix as well (composite rotation)

– proof)

• The length of vector v is not changed after applying a
rotation matrix R

– proof)

R

RT

and

vT

v = v∙v

[Practice] Properties of Rotation Matrix

• Start with the previous practice code

• Just replace render() function

def render():

global gCamAng, gCamHeight

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glMatrixMode(GL_PROJECTION)

glLoadIdentity()

gluPerspective(45, 1, 1,10)

glMatrixMode(GL_MODELVIEW)

glLoadIdentity()

gluLookAt(5*np.sin(gCamAng),gCamHeight,5*np.cos(gCamAng),

0,0,0, 0,1,0)

drawFrame() # draw global frame

glEnable(GL_LIGHTING)

glEnable(GL_LIGHT0)

glEnable(GL_RESCALE_NORMAL) # rescale normal

glLightfv(GL_LIGHT0, GL_POSITION, (1.,2.,3.,1.))

glLightfv(GL_LIGHT0, GL_AMBIENT, (.1,.1,.1,1.))

glLightfv(GL_LIGHT0, GL_DIFFUSE, (1.,1.,1.,1.))

glLightfv(GL_LIGHT0, GL_SPECULAR, (1.,1.,1.,1.))

ZYX Euler angles

t = glfw.get_time()

xang = t

yang = np.radians(30)

zang = np.radians(30)

M = np.identity(4)

Rx = np.array([[1,0,0],

[0, np.cos(xang), -np.sin(xang)],

[0, np.sin(xang), np.cos(xang)]])

Ry = np.array([[np.cos(yang), 0, np.sin(yang)],

[0,1,0],

[-np.sin(yang), 0, np.cos(yang)]])

Rz = np.array([[np.cos(zang), -np.sin(zang), 0],

[np.sin(zang), np.cos(zang), 0],

[0,0,1]])

R = Rz @ Ry @ Rx

check inverse rotation

R = Rz @ Ry @ Rx.T

check R @ R.T

print(R @ R.T)

check determinant

print(np.linalg.det(R))

M[:3,:3] = R

glMultMatrixf(M.T)

glScalef(.25,.25,.25)

draw cubes

glMaterialfv(GL_FRONT,

GL_AMBIENT_AND_DIFFUSE, (.5,.5,.5,1.))

drawCube_glDrawArray()

glTranslatef(2.5,0,0)

glMaterialfv(GL_FRONT,

GL_AMBIENT_AND_DIFFUSE, (1.,0.,0.,1.))

drawCube_glDrawArray()

glTranslatef(-2.5,2.5,0)

glMaterialfv(GL_FRONT,

GL_AMBIENT_AND_DIFFUSE, (0.,1.,0.,1.))

drawCube_glDrawArray()

glTranslatef(0,-2.5,2.5)

glMaterialfv(GL_FRONT,

GL_AMBIENT_AND_DIFFUSE, (0.,0.,1.,1.))

drawCube_glDrawArray()

glDisable(GL_LIGHTING)

Rotation Matrix for Rotation about an

Arbitrary Axis

• Recall Euler’s Rotation Theorem:

– Arbitrary 3D rotation equals to one rotation around an axis

– How to compute the rotation matrix for given axis vector

u=(ux,uy,uz) by angle θ?

• A naive, inefficient method:

– Step 1: rotate the axis u so that it is aligned with the Z-axis

– Step 2: rotate about the Z-axis by the angle θ

– Step 3: rotate the Z-axis back to the original axis

– For details, see 9-reference-naive-rotvec2rotmat.pdf

Rotation Matrix for Rotation about an

Arbitrary Axis

• More efficient solution: Rodrigues' rotation

formula

• Rotation about a normalized axis vector

u=(ux,uy,uz) by angle θ:

(You do not have to memorize this)

Quiz #3

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Quaternions

• Complex numbers can be used to represent 2D

rotations

• Basic idea: Quaternion is its extension to 3D space

iyxz  12 iwhere

kzjyixwq 

jikikjkji

jkiijkkij

ijkkji







,,

,,

1222
where

Unit Quaternions

• Unit quaternions represent 3D rotations

• Rotation about axis by angle

),(

),,,(

v

q

w

zyxw

kzjyixw





 12222  zyxw

1 qpqp),,,0(zyxpwhere











2
sinˆ,

2
cos


vq

v̂



),,(: zyxp

),,(:' zyxp 

v̂ 

Unit Quaternions

• For details, see 9-reference-quaternions.pdf

• Antipodal equivalence

– q and –q represent the same rotation

– 2-to-1 mapping: Each individual rotation is represented

by two quaternions

Which Representation to Use?

• 3D orientation & rotation representation

– Euler angles

– Rotation Vector (Axis-Angle)

– Rotation matrices

– Unit quaternions

• Which one to use?

• General recommendation: rotation matrices or unit
quaternions.

• But you may need other representations depending on the
context.

– Euler angles are useful for hardware implementation of ball joints.

Which Representation to Use?

• Reason: Euler angles and axis-angle have problems

• Euler angles

– Discontinuity (or many-to-one correspondences)

– Gimbal lock

• Rotation Vector (Axis-Angle)

– Discontinuity (or many-to-one correspondences)

Which Representation to Use?

• Rotation matrices and unit quaternions do not have

discontinuity or gimbal lock problems

– Because they use more parameters (rotation matrix: 9,

unit quaternion: 4) than DOFs of 3D orientation/rotation

(3)

• Rotation matrices vs. Unit quaternions ?

Rotation Matrix vs. Unit Quaternion

• Equivalent in many aspects

– Redundant

– No singularity

– Can be converted from & to axis-angle representation

• Why quaternions ?

– Fewer parameters

– Simpler algebra

– Easy to fix numerical error

• Why rotation matrices ?

– One-to-one correspondence

– Handle rotation and translation in a uniform way

• Eg) 4x4 homogeneous matrices

Conversion Between Representations

• Rotation vector → Rotation matrix

– Rodrigues' rotation formula, ...

• Rotation matrix → Rotation vector

– Several ways, we'll see one of them in next lecture.

• Euler angles → Rotation matrix

– Building canonical rotation matrices (Rx, Ry, Rz) and composing them

• Rotation matrix → Euler angles

– Several ways, but not covered in this class

• Unit quaternion ↔ Rotation matrix

– Several ways, but not covered in this class

Next Time

• Lab in this week:

– Lab assignment 9

• Next lecture:

– 10 - Animation

• Class Assignment #2

– Due: 23:59, May 24, 2019

• Acknowledgement: Some materials come from the lecture slides of

– Prof. Jehee Lee, SNU, http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.html

– Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cgi

– Prof. Kayvon Fatahalian and Prof. Keenan Crane, CMU, http://15462.courses.cs.cmu.edu/fall2015/

– Prof. Sung-Hee Lee, KAIST

http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.html
http://calab.hanyang.ac.kr/cgi-bin/cg.cgi
http://15462.courses.cs.cmu.edu/fall2015/

