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Some Notice

• It seems like that we need to keep online lectures / 

labs until the end of the semester.

• We're considering taking the midterm exam in 1st

week of June, but not yet determined.

– The scope would be Lecture 2 ~7.



What we’ve done so far

• Lecture 3 – 5 (Transformation)

• : Movement & placement

• Lecture 5 – 6 (Vertex Processing)

• : Mapping to 2D screen

• Lecture 7 – 8 (Mesh, Lighting & Shading)

• : Appearance

• Lecture 9 – 10 (Orientation & Rotation, Animation)

• : Movement & placement



Topics Covered

• Orientation vs. Rotation

• Degrees of freedom

• 2D orientation & rotation representations

– Using 1D angle

– Rotation matrices (2x2)

• 3D orientation & rotation representations

– Euler angles

– Axis-angle (Rotation vector)

– Rotation matrices

– Unit quaternions



Orientation vs. Rotation,

Degrees of freedom



Orientation vs. Rotation

• Rotation

– Circular movement

• Orientation

– The state of being oriented

– Given a coordinate system, the orientation of an object 

can be represented as a rotation from a reference pose



Analogy

• (point : vector) is similar to (orientation : rotation)

– Both represent a sort of (state : movement)

Reference coordinate system



Analogy

• (point : vector) is similar to (orientation : rotation)

– Both represent a sort of (state : movement)

Reference coordinate system

point : the 3d location of the object

vector : translational movement



Analogy

• (point : vector) is similar to (orientation : rotation)

– Both represent a sort of (state : movement)

Reference coordinate system

orientation : the 3d orientation of the object

rotation : circular movement



Analogy

• Point & vector

– (point) + (point) → (UNDEFINED)

– (vector) ± (vector) → (vector)

– (point) ± (vector) → (point)

– (point) - (point) → (vector)

• Orientation & rotation

– (orientation) (+) (orientation) → (UNDEFINED)

– (rotation) (±) (rotation) → (rotation)

– (orientation) (±) (rotation) → (orientation)

– (orientation) (-) (orientation) → (rotation)

Not vector addition & subtraction



Degrees of Freedom (DOFs)

• The number of independent parameters that 

define a unique configuration

Translation along one 

direction Rotation about an axis

: 1 DOF
: 1 DOF



Translation on a plane

Rotation about two axes

Translation in 3D space
Rotation in 3D space

: 2 DOFs

: 2 DOFs

: 3 DOFs
: 3 DOFs



Any rigid motion in 3D 

space

: 6 DOF



Quiz #1

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the 

above format to be checked for “attendance”.

https://www.slido.com/


2D & 3D orientation & rotation 

representations



2D Rotation

0

2



2









or



2D rotation is 1 DOF 

movement.

A single number (angle θ) 

can represents any 2D 

rotation.



2D Orientation
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The single number 

(angle θ) can represent 

2D orientation, but it's 

not so good for 

orientation.



2D Orientation

Although the motion is continuous, 

its representation could be discontinuous
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2D Orientation

Many-to-one correspondences 

between 2D orientations and their 

representations

0

2



2









or

)(t






Time



Extra Parameter



),( yx

X

YUsing more 
parameters than 
DOFs can be a 
solution.



Extra Parameter
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2x2 Rotation matrix is one 

of the methods using extra 

parameters

There are
• No discontinuity
• No many-to-one correspondence
for each element of 2x2 rotation matrix!



2D Rotation and Orientation

• 2D Rotation

– The consequence of any 2D rotational movement can be 

uniquely represented by a turning angle

• 2D Orientation

– The non-singular parameterization of 2D orientations requires 

extra parameters

• E.g.) 2x2 rotation matrices
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3D Rotation

• Given two arbitrary orientations of a rigid object,



3D Rotation

• We can always find a fixed axis of rotation and 

an angle about the axis

v̂





Euler’s Rotation Theorem

In other words,

• Arbitrary 3D rotation equals to one rotation 

around an axis

• Any 3D rotation leaves one vector unchanged

The general displacement of a rigid body with

one point fixed is a rotation about some axis

Leonhard Euler (1707-1783)



Describing 3D Rotation & Orientation

• Describing 3D rotation & orientation is more 

complicated than 2D.

• Many ways to do it

– Euler angles

– Rotation vector (Axis-angle)

– Rotation matrices

– Unit quaternions



Euler Angles

• Express any arbitrary 3D rotation using three 

rotation angles about three principle axes

– x, y, z axes



Example: ZXZ Euler Angles

• 1. Rotate about Z-axis by α

• 2. Rotate about X-axis of the new frame by β

• 3. Rotate about Z-axis of the new frame by γ

https://commons.wikimedia.org/w
iki/File:Euler2a.gif
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α α β β
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R=         Rz(α)              Rx(β) Rz(γ)

1. 2. 3.

https://commons.wikimedia.org/wiki/File:Euler2a.gif


Example: Yaw-Pitch-Roll Convention

(ZYX Euler Angles)

• Common for describing the 

orientation of aircrafts

• 1. Rotate about Z-axis by yaw

angle

• 2. Rotate about Y-axis of the new 

frame by pitch angle

• 3. Rotate about X-axis of the new 

frame by roll angle

z

y

x

R= Rz(yaw) Ry(pitch) Rx(roll)



Recall: Rotation Matrix in 3D

b
b



Euler Angles

• Possible 12 combinations

– XYZ, XYX, XZY, XZX

– YZX, YZY, YXZ, YXY

– ZXY, ZXZ, ZYX, ZYZ



[Practice] Euler Angles Online Demo

• Try to change yaw, pitch, roll angles

http://www.ctralie.com/Teaching/COMPS
CI290/Materials/EulerAnglesViz/

http://www.ctralie.com/Teaching/COMPSCI290/Materials/EulerAnglesViz/


Gimbal

• Hardware 
implementation of Euler 
angles

• Used in 

– Camera systems: to 
stabilize the camera 
movement

– Inertial navigation 
systems (INS): to get the 
current orientation of  
aircrafts or ships



Gimbal Lock
• One potential problem that Euler angles can suffer from is ‘gimbal 

lock’
• This results when two axes effectively line up, resulting in a 

temporary loss of a degree of freedom

• Euler angles have singularities, i.e., it loses DoFs (can’t move in a 
certain direction) at some configurations

Normal situation.
The plane can rotate
in any directions

Gimbal lock:
two out of the three 
gimbals are in the same 
plane, one DoF is lost

34GSCT, KAIST



[Practice] Gimbal Lock

• Make gimbal lock by aligning two of three rotation axes

– Set pitch to 90 degrees

http://www.ctralie.com/Teaching/COMPS
CI290/Materials/EulerAnglesViz/

http://www.ctralie.com/Teaching/COMPSCI290/Materials/EulerAnglesViz/


[Practice] Euler Angles in OpenGL

• Start with the practice code from the previous 

lecture (8-Lighting&Shading).

• Just replace render() function



# ZYX Euler angles

t = glfw.get_time()

xang = t

yang = np.radians(30)

zang = np.radians(30)

M = np.identity(4)

Rx = np.array([[1,0,0],

[0, np.cos(xang), -np.sin(xang)],

[0, np.sin(xang), np.cos(xang)]])

Ry = np.array([[np.cos(yang), 0, np.sin(yang)],

[0,1,0],

[-np.sin(yang), 0, np.cos(yang)]])

Rz = np.array([[np.cos(zang), -np.sin(zang), 0],

[np.sin(zang), np.cos(zang), 0],

[0,0,1]])

M[:3,:3] = Rz @ Ry @ Rx

glMultMatrixf(M.T)

# # The same ZYX Euler angles with OpenGL functions

# glRotate(30, 0,0,1)

# glRotate(30, 0,1,0)

# glRotate(np.degrees(xang), 1,0,0)

glScalef(.25,.25,.25)

# draw cubes

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, (.5,.5,.5,1.))

drawCube_glDrawArray()

glTranslatef(2.5,0,0)

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, (1.,0.,0.,1.))

drawCube_glDrawArray()

glTranslatef(-2.5,2.5,0)

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, (0.,1.,0.,1.))

drawCube_glDrawArray()

glTranslatef(0,-2.5,2.5)

glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, (0.,0.,1.,1.))

drawCube_glDrawArray()

glDisable(GL_LIGHTING)

def render():

global gCamAng, gCamHeight

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER

_BIT)

glEnable(GL_DEPTH_TEST)

glMatrixMode(GL_PROJECTION)

glLoadIdentity()

gluPerspective(45, 1, 1,10)

glMatrixMode(GL_MODELVIEW)

glLoadIdentity()

gluLookAt(5*np.sin(gCamAng),gCamHeight,5*np

.cos(gCamAng), 0,0,0, 0,1,0)

# draw global frame

drawFrame()

glEnable(GL_LIGHTING)

glEnable(GL_LIGHT0)

glEnable(GL_RESCALE_NORMAL)

# set light properties

lightPos = (4.,5.,6.,1.)

glLightfv(GL_LIGHT0, GL_POSITION,

lightPos)

ambientLightColor = (.1,.1,.1,1.)

diffuseLightColor = (1.,1.,1.,1.)

specularLightColor = (1.,1.,1.,1.)

glLightfv(GL_LIGHT0, GL_AMBIENT,

ambientLightColor)

glLightfv(GL_LIGHT0, GL_DIFFUSE,

diffuseLightColor)

glLightfv(GL_LIGHT0, GL_SPECULAR,

specularLightColor)



Quiz #2

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the 

above format to be checked for “attendance”.

https://www.slido.com/


Rotation Vector (Axis-Angle)

• Rotation vector (3 parameters)

• Axis-Angle (1+2 parameters)

v̂


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3D Orientation

• Euler angles and rotation vector use 3 parameters.

• Expressing 3D orientation using 3 parameters has problems:

• Euler angles

– Discontinuity (or many-to-one correspondences)

– Gimbal lock

• Rotation Vector (Axis-Angle)

– Discontinuity (or many-to-one correspondences)
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3D Orientation

• To avoid these problems, we need more parameters than 
DOFs

– Rotation matrices 

– Unit quaternions

• But Euler angles is still meaningful because

– It’s the most common way to implement actuated 3 DOF rotational 
joints in real world.

– No need to "normalize" the numbers.



Rotation Matrices

• Rotation in 3D space can be represented as 3x3 matrix:

R=
α α
α α β β

β β

γ γ
γ γ

Rotation matrix 

about x, y, z axis

Rotation matrix from 

ZXZ Euler angles



Meaning of Rotation Matrix

• A rotation matrix defines 

– Orientation of new rotated frame or, 

– Rotation from a global frame to be that rotated frame

R



Mathematical Properties of Rotation Matrix

• A rotation matrix is an orthogonal matrix with 

determinant 1

– Sometimes it is called special orthogonal matrix

– A set of rotation matrices of size 3 forms a special 

orthogonal group, SO(3)

1.

2.

• For details, see 9-reference-rotmat-properties.pdf



Geometric Properties of Rotation Matrix

• RT is an inverse rotation of R

– Because,

• R1R2 is a rotation matrix as well (composite rotation)

– proof)

• The length of vector v is not changed after applying a 
rotation matrix R

– proof)

R

RT

and

vT

v = v∙v



[Practice] Properties of Rotation Matrix

• Start with the previous practice code

• Just replace render() function



def render():

global gCamAng, gCamHeight

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glMatrixMode(GL_PROJECTION)

glLoadIdentity()

gluPerspective(45, 1, 1,10)

glMatrixMode(GL_MODELVIEW)

glLoadIdentity()

gluLookAt(5*np.sin(gCamAng),gCamHeight,5*np.cos(gCamAng),

0,0,0, 0,1,0)

drawFrame() # draw global frame

glEnable(GL_LIGHTING)

glEnable(GL_LIGHT0)

glEnable(GL_RESCALE_NORMAL) # rescale normal

glLightfv(GL_LIGHT0, GL_POSITION, (1.,2.,3.,1.))

glLightfv(GL_LIGHT0, GL_AMBIENT, (.1,.1,.1,1.))

glLightfv(GL_LIGHT0, GL_DIFFUSE, (1.,1.,1.,1.))

glLightfv(GL_LIGHT0, GL_SPECULAR, (1.,1.,1.,1.))

# ZYX Euler angles

t = glfw.get_time()

xang = t

yang = np.radians(30)

zang = np.radians(30)

M = np.identity(4)

Rx = np.array([[1,0,0],

[0, np.cos(xang), -np.sin(xang)],

[0, np.sin(xang), np.cos(xang)]])

Ry = np.array([[np.cos(yang), 0, np.sin(yang)],

[0,1,0],

[-np.sin(yang), 0, np.cos(yang)]])

Rz = np.array([[np.cos(zang), -np.sin(zang), 0],

[np.sin(zang), np.cos(zang), 0],

[0,0,1]])

R = Rz @ Ry @ Rx

# # check inverse rotation

# R = Rz @ Ry @ Rx.T

# # check R @ R.T

# print(R @ R.T)

# # check determinant

# print(np.linalg.det(R))

M[:3,:3] = R

glMultMatrixf(M.T)

glScalef(.25,.25,.25)

# draw cubes

glMaterialfv(GL_FRONT,

GL_AMBIENT_AND_DIFFUSE, (.5,.5,.5,1.))

drawCube_glDrawArray()

glTranslatef(2.5,0,0)

glMaterialfv(GL_FRONT,

GL_AMBIENT_AND_DIFFUSE, (1.,0.,0.,1.))

drawCube_glDrawArray()

glTranslatef(-2.5,2.5,0)

glMaterialfv(GL_FRONT,

GL_AMBIENT_AND_DIFFUSE, (0.,1.,0.,1.))

drawCube_glDrawArray()

glTranslatef(0,-2.5,2.5)

glMaterialfv(GL_FRONT,

GL_AMBIENT_AND_DIFFUSE, (0.,0.,1.,1.))

drawCube_glDrawArray()

glDisable(GL_LIGHTING)



Rotation Matrix for Rotation about an 

Arbitrary Axis

• Recall Euler’s Rotation Theorem:

– Arbitrary 3D rotation equals to one rotation around an axis

– How to compute the rotation matrix for given axis vector 

u=(ux,uy,uz) by angle θ?

• A naive, inefficient method:

– Step 1: rotate the axis u so that it is aligned with the Z-axis

– Step 2: rotate about the Z-axis by the angle θ

– Step 3: rotate the Z-axis back to the original axis

– For details, see 9-reference-naive-rotvec2rotmat.pdf



Rotation Matrix for Rotation about an 

Arbitrary Axis

• More efficient solution: Rodrigues' rotation 

formula

• Rotation about a normalized axis vector 

u=(ux,uy,uz) by angle θ:

(You do not have to memorize this)



Quiz #3

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the 

above format to be checked for “attendance”.

https://www.slido.com/


Quaternions

• Complex numbers can be used to represent 2D 

rotations

• Basic idea: Quaternion is its extension to 3D space
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Unit Quaternions

• Unit quaternions represent 3D rotations

• Rotation about axis     by angle
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Unit Quaternions

• For details, see 9-reference-quaternions.pdf

• Antipodal equivalence

– q and –q represent the same rotation

– 2-to-1 mapping: Each individual rotation is represented 

by two quaternions



Which Representation to Use?

• 3D orientation & rotation representation

– Euler angles

– Rotation Vector (Axis-Angle)

– Rotation matrices

– Unit quaternions

• Which one to use?

• General recommendation: rotation matrices or unit 
quaternions.

• But you may need other representations depending on the 
context.

– Euler angles are useful for hardware implementation of ball joints.



Which Representation to Use?

• Reason: Euler angles and axis-angle have problems

• Euler angles

– Discontinuity (or many-to-one correspondences)

– Gimbal lock

• Rotation Vector (Axis-Angle)

– Discontinuity (or many-to-one correspondences)



Which Representation to Use?

• Rotation matrices and unit quaternions do not have 

discontinuity or gimbal lock problems

– Because they use more parameters (rotation matrix: 9, 

unit quaternion: 4) than DOFs of 3D orientation/rotation 

(3)

• Rotation matrices vs. Unit quaternions ?



Rotation Matrix vs. Unit Quaternion

• Equivalent in many aspects

– Redundant

– No singularity

– Can be converted from & to axis-angle representation

• Why quaternions ?

– Fewer parameters

– Simpler algebra

– Easy to fix numerical error

• Why rotation matrices ?

– One-to-one correspondence

– Handle rotation and translation in a uniform way

• Eg) 4x4 homogeneous matrices



Conversion Between Representations

• Rotation vector → Rotation matrix

– Rodrigues' rotation formula, ...

• Rotation matrix → Rotation vector

– Several ways, we'll see one of them in next lecture.

• Euler angles → Rotation matrix

– Building canonical rotation matrices (Rx, Ry, Rz) and composing them

• Rotation matrix → Euler angles

– Several ways, but not covered in this class

• Unit quaternion ↔ Rotation matrix

– Several ways, but not covered in this class



Next Time

• Lab in this week:

– Lab assignment 9

• Next lecture:

– 10 - Animation

• Class Assignment #2

– Due: 23:59, May 24, 2019
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– Prof. Sung-Hee Lee, KAIST
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