Computer Graphics

9 - Orientation \& Rotation

Yoonsang Lee
Spring 2020

Some Notice

- It seems like that we need to keep online lectures / labs until the end of the semester.
- We're considering taking the midterm exam in $1^{\text {st }}$ week of June, but not yet determined.
- The scope would be Lecture $2 \sim 7$.

What we've done so far

- Lecture 3-5 (Transformation)
- : Movement \& placement
- Lecture 5 - 6 (Vertex Processing)
- : Mapping to $2 D$ screen
- Lecture 7 - 8 (Mesh, Lighting \& Shading)
- : Appearance
- Lecture 9-10 (Orientation \& Rotation, Animation)
- : Movement \& placement

Topics Covered

- Orientation vs. Rotation
- Degrees of freedom
- 2D orientation \& rotation representations
- Using 1D angle
- Rotation matrices (2x2)
- 3D orientation \& rotation representations
- Euler angles
- Axis-angle (Rotation vector)
- Rotation matrices
- Unit quaternions

Orientation vs. Rotation,
 Degrees of freedom

Orientation vs. Rotation

- Rotation
- Circular movement
- Orientation
- The state of being oriented
- Given a coordinate system, the orientation of an object can be represented as a rotation from a reference pose

Analogy

- (point : vector) is similar to (orientation : rotation)
- Both represent a sort of (state : movement)

Analogy

- (point : vector) is similar to (orientation : rotation)
- Both represent a sort of (state : movement)

Analogy

- (point : vector) is similar to (orientation : rotation)
- Both represent a sort of (state : movement)

orientation : the 3 d orientation of the object rotation : circular movement

Analogy

- Point \& vector
- (point) + (point) \rightarrow (UNDEFINED)
- (vector) \pm (vector) \rightarrow (vector)
- (point) \pm (vector) \rightarrow (point)
- (point) - (point) \rightarrow (vector)
- Orientation \& rotation
- (orientation) (+) (orientation) \rightarrow (UNDEFINED)
- (rotation) (\pm) (rotation) \rightarrow (rotation)
- (orientation) (\pm) (rotation) \rightarrow (orientation)
$-($ orientation $)(-)$ (orientation) \rightarrow (rotation)

Degrees of Freedom (DOFs)

- The number of independent parameters that define a unique configuration

Translation along one direction
: 1 DOF

Rotation about an axis
: 1 DOF

Translation on a plane
: 2 DOFs

Translation in 3D space
: 3 DOFs

Rotation about two axes
: 2 DOFs

Rotation in 3D space
: 3 DOFs

Any rigid motion in 3D space
: 6 DOF

Quiz \#1

- Go to https://www.slido.com/
- Join \#cg-hyu
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

2D \& 3D orientation \& rotation representations

2D Rotation

2D Orientation

2D Orientation

2D Orientation

Extra Parameter

Using more parameters than DOFs can be a solution.

Extra Parameter

2×2 Rotation matrix is one of the methods using extra parameters

2D Rotation and Orientation

- 2D Rotation
- The consequence of any 2D rotational movement can be uniquely represented by a turning angle
- 2D Orientation
- The non-singular parameterization of 2D orientations requires extra parameters
- E.g.) 2×2 rotation matrices

3D Rotation

- Given two arbitrary orientations of a rigid object,

3D Rotation

- We can always find a fixed axis of rotation and an angle about the axis

Euler's Rotation Theorem

The general displacement of a rigid body with one point fixed is a rotation about some axis

Leonhard Euler (1707-1783)
In other words,

- Arbitrary 3D rotation equals to one rotation around an axis
- Any 3D rotation leaves one vector unchanged

Describing 3D Rotation \& Orientation

- Describing 3D rotation \& orientation is more complicated than 2D.
- Many ways to do it
- Euler angles
- Rotation vector (Axis-angle)
- Rotation matrices
- Unit quaternions

Euler Angles

- Express any arbitrary 3D rotation using three rotation angles about three principle axes
- x, y, z axes

Example: ZXZ Euler Angles

- 1. Rotate about Z-axis by α
https://commons.wikimedia.org/w iki/File:Euler2a.gif
- 2. Rotate about X-axis of the new frame by β
- 3. Rotate about Z-axis of the new frame by γ

$$
\begin{aligned}
& \mathbf{R}=\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \beta & -\sin \beta \\
0 & \sin \beta & \cos \beta
\end{array}\right]\left[\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \mathbf{R}=\begin{array}{c}
\mathbf{R}_{\mathbf{z}}(\alpha)
\end{array} \mathbf{R}_{\mathrm{x}}(\beta) \quad \mathbf{R}_{\mathbf{z}}(\gamma)
\end{aligned}
$$

Example: Yaw-Pitch-Roll Convention (ZYX Euler Angles)

- Common for describing the orientation of aircrafts
- 1. Rotate about Z-axis by yaw angle
- 2. Rotate about Y-axis of the new frame by pitch angle
- 3. Rotate about X-axis of the new frame by roll angle
$R=R_{z}$ (yaw) $R_{y}($ pitch $) R_{x}($ roll $)$

Recall: Rotation Matrix in 3D

Rotation about x axis:

$$
\mathbf{R}_{x, \theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
$$

Rotation about y axis:
$\mathbf{R}_{y, \theta}=\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ {[-] \sin \theta} & 0 & \cos \theta\end{array}\right]$

Rotation about z axis:
$\mathbf{R}_{z, \theta}=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$

View looking down -x axis:

View looking down -y axis:

Euler Angles

- Possible 12 combinations
- XYZ, XYX, XZY, XZX
- YZX, YZY, YXZ, YXY
- ZXY, ZXZ, ZYX, ZYZ

[Practice] Euler Angles Online Demo

http://www.ctralie.com/Teaching/COMPS Cl290/Materials/EulerAnglesViz/

- Try to change yaw, pitch, roll angles

Gimbal

- Hardware implementation of Euler angles
- Used in
- Camera systems: to stabilize the camera movement
- Inertial navigation systems (INS): to get the current orientation of aircrafts or ships

Gimbal Lock

- One potential problem that Euler angles can suffer from is 'gimbal lock'
- This results when two axes effectively line up, resulting in a temporary loss of a degree of freedom

Normal situation.
The plane can rotate in any directions

Gimbal lock: two out of the three gimbals are in the same plane, one DoF is lost

- Euler angles have singularities, i.e., it loses DoFs (can't move in a certain direction) at some configurations

[Practice] Gimbal Lock

http://www.ctralie.com/Teaching/COMPS Cl290/Materials/EulerAnglesViz/

- Make gimbal lock by aligning two of three rotation axes
- Set pitch to 90 degrees

[Practice] Euler Angles in OpenGL

- Start with the practice code from the previous lecture (8-Lighting\&Shading).
- Just replace render() function
def render()
global gCamAng, gCamHeight
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER _BIT)
glEnable(GL_DEPTH_TEST)
glMatrixMode(GL_PROJECTION)
glLoadIdentity()
gluPerspective (45, 1, 1,10)
glMatrixMode (GL_MODELVIEW)
glLoadIdentity()
gluLookAt (5*np.sin(gCamAng), gCamHeight, 5*np . $\cos ($ (CamAng) , $0,0,0,0,1,0)$
\# draw global frame
drawFrame()
glEnable(GL_LIGHTING)
glEnable(GL_LIGHT0)
glEnable(GL_RESCALE_NORMAL)
\# set light properties
lightPos $=(4 ., 5 ., 6 ., 1$.
glLightfv(GL_LIGHTO, GL_POSITION, lightPos)
ambientLightColor $=(.1, .1, .1,1$.
diffuseLightColor = (1.,1.,1.,1.)
specularLightColor $=(1 ., 1 ., 1 ., 1$.
glLightfv(GL_LIGHT0, GL_AMBIENT, ambientLightColor)
glLightfv(GL_LIGHTO, GL_DIFFUSE, diffuseLightColor)
glLightfv(GL_LIGHT0, GL_SPECULAR, specularLightColor)
\# ZYX Euler angles

```
t = glfw.get_time()
```


xang $=t$

yang $=$ np.radians (30)
zang $=$ np.radians (30)
$\mathrm{M}=\mathrm{np}$.identity (4)
$\mathrm{Rx}=\mathrm{np} . \operatorname{array}\left(\left[\begin{array}{l}1,0,0]\end{array}\right.\right.$,
[0, np.cos (xang), -np.sin(xang)],
[0, np.sin(xang), np.cos(xang)]])
Ry = np.array ([$n \mathrm{np} \cdot \cos (\mathrm{yang}), 0, \mathrm{np} \cdot \sin (y a n g)]$,
[0,1,0],
[-np.sin(yang), 0, np.cos (yang)]])
$\mathrm{Rz}=\mathrm{np} . \operatorname{array}([\mathrm{np} . \cos (\mathrm{zang}),-\mathrm{np} . \sin (z a n g), 0]$,
[np.sin(zang), np.cos(zang), 0],
[0,0,1]])
$\mathrm{M}[: 3,: 3]=\mathrm{Rz}$ @ $\mathrm{Ry} @ \mathrm{Rx}$
glMultMatrixf (M.T)
\# \# The same ZYX Euler angles with OpenGL functions
\# glRotate (30, 0,0,1)
\# glRotate (30, 0,1,0)
\# glRotate (np.degrees (xang), 1,0,0)
glScalef(.25,.25,.25)
\# draw cubes
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, (.5,.5,.5,1.))
drawCube_glDrawĀrray()
glTranslatef (2.5,0,0)
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, (1.,0.,0.,1.))
drawCube_glDrawĀrray()
glTranslatef (-2.5,2.5,0)
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, (0.,1.,0.,1.))
drawCube_glDrawArray()
glTranslatef ($0,-2.5,2.5$)
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, (0.,0.,1.,1.))
drawCube_glDrawArray()
glDisable(GL_LIGHTING)

Quiz \#2

- Go to https://www.slido.com/
- Join \#cg-hyu
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Rotation Vector (Axis-Angle)

$\hat{\mathbf{v}}$: rotation axis (unit vector)
θ : scalar angle

- Rotation vector (3 parameters) $\mathbf{v}=\theta \hat{\mathbf{v}}=(x, y, z)$
- Axis-Angle (1+2 parameters) $(\theta, \hat{\mathbf{v}})$

3D Orientation

- Euler angles and rotation vector use 3 parameters.
- Expressing 3D orientation using 3 parameters has problems:
- Euler angles
- Discontinuity (or many-to-one correspondences)
- Gimbal lock
- Rotation Vector (Axis-Angle)

3D Orientation

- To avoid these problems, we need more parameters than DOFs
- Rotation matrices
- Unit quaternions
- But Euler angles is still meaningful because
- It's the most common way to implement actuated 3 DOF rotational joints in real world.
- No need to "normalize" the numbers.

Rotation Matrices

- Rotation in 3D space can be represented as 3×3 matrix:

Rotation matrix about x, y, z axis

Rotation matrix from ZXZ Euler angles

$$
\mathbf{R}_{y, \theta}=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]
$$

Rotation about z axis:
$\mathbf{R}_{z, \theta}=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$

View looking down -y axis:

Rotation about x axis:

$$
\mathbf{R}_{x, \theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
$$

Rotation about y axis:
 rotation about x

$$
\mathbf{R}=\left[\begin{array}{ccc}
\cos \alpha & -\sin \alpha & 0 \\
\sin \alpha & \cos \alpha & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \beta & -\sin \beta \\
0 & \sin \beta & \cos \beta
\end{array}\right]\left[\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Meaning of Rotation Matrix

$$
\begin{array}{r}
\mathbf{R}=\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right] \\
\vdots \\
\vdots
\end{array} \hat{\mathbf{1}}_{x} \hat{\mathbf{1}}_{y} \quad \hat{\mathbf{1}}_{z}
$$

- A rotation matrix defines
- Orientation of new rotated frame or,
- Rotation from a global frame to be that rotated frame

Mathematical Properties of Rotation Matrix

1. $\mathbf{R R}^{T}=\mathbf{R}^{T} \mathbf{R}=\mathbf{I}$

2. $\operatorname{det}(\mathbf{R})=1$

- For details, see 9-reference-rotmat-properties.pdf
- A rotation matrix is an orthogonal matrix with determinant 1
- Sometimes it is called special orthogonal matrix
- A set of rotation matrices of size 3 forms a special orthogonal group, $S O(3)$

Geometric Properties of Rotation Matrix

- \mathbf{R}^{T} is an inverse rotation of \mathbf{R}
- Because, $\mathbf{R R}^{T}=\mathbf{I} \Longleftrightarrow \mathbf{R}^{-1}=\mathbf{R}^{T}$

- $\mathbf{R}_{1} \mathbf{R}_{2}$ is a rotation matrix as well (composite rotation)
- proof)

$$
\begin{gathered}
\left(\mathbf{R}_{1} \mathbf{R}_{2}\right)^{T}\left(\mathbf{R}_{1} \mathbf{R}_{2}\right)=\mathbf{R}_{2}^{T} \mathbf{R}_{1}^{T} \mathbf{R}_{1} \mathbf{R}_{2}=\mathbf{R}_{2}^{T} \mathbf{R}_{2}=\mathbf{I} \\
\text { and } \operatorname{det}\left(\mathbf{R}_{1} \mathbf{R}_{2}\right)=\operatorname{det}\left(\mathbf{R}_{1}\right) \cdot \operatorname{det}\left(\mathbf{R}_{2}\right)=1
\end{gathered}
$$

- The length of vector \mathbf{v} is not changed after applying a rotation matrix \mathbf{R}

$$
\begin{aligned}
& \text { - proof) }\|\mathbf{R v}\|^{2}=(\mathbf{R v})^{T}(\mathbf{R v})=\mathbf{v}^{T} \mathbf{R}^{T} \mathbf{R} \mathbf{v}=\mathbf{v}^{T} \mathbf{v}=\|\mathbf{v}\|^{2} \\
& \left.\qquad \begin{array}{|l|}
\mathbf{v}^{\top} \\
\mathbf{v} \\
\end{array}\right]=\mathbf{v} \cdot \mathbf{v}
\end{aligned}
$$

[Practice] Properties of Rotation Matrix

- Start with the previous practice code
- Just replace render() function

def render ():

global gCamAng, gCamHeight
glClear (GL_COLOR_BUFFER_BITIGL_DEPTH_BUFFER_BIT)
glEnable(GL_DEPTH_TEST)
glMatrixMode (GL_PROJECTION)
glLoadIdentity()
gluPerspective (45, 1, 1,10)
glMatrixMode (GL_MODELVIEW)
glLoadIdentity()
gluLookAt (5*np.sin (gCamAng), gCamHeight, 5*np.cos (gCamAng), $0,0,0,0,1,0)$
drawFrame() \# draw global frame
glEnable(GL_LIGHTING)
glEnable(GL_LIGHTO)
glEnable(GL_RESCALE_NORMAL) \# rescale normal
glLightfv(GL_LIGHT0, GL_POSITION, (1.,2.,3.,1.))
glLightfv(GL_LIGHT0, GL_AMBIENT, (.1,.1,.1,1.))
glLightfv(GL_LIGHT0, GL_DIFFUSE, (1.,1.,1.,1.))
glLightfv(GL_LIGHT0, GL_SPECULAR, (1.,1.,1.,1.))
\# ZYX Euler angles
$\mathrm{t}=\mathrm{glfw} . \mathrm{get}$ _time()
xang $=t$
yang $=$ np.radians(30)
zang = np.radians(30)
$\mathrm{M}=\mathrm{np}$.identity(4)
$R x=n p . \operatorname{array}([[1,0,0]$,
[0, np.cos(xang), -np.sin(xang)],
[0, np.sin(xang), np.cos(xang)]])
$R y=n p \cdot \operatorname{array}([[n p \cdot \cos (y a n g), 0, n p \cdot \sin (y a n g)]$,
[0,1,0],
[-np.sin(yang), 0, np.cos (yang)]])
$R z=n p \cdot \operatorname{array}([[n p \cdot \cos (z a n g),-n p \cdot \sin (z a n g), 0]$, [np.sin(zang), np.cos(zang), 0], [$0,0,1]$)
$R=R z @ R y @ R x$
\# \# check inverse rotation
\# R = Rz @ Ry @ Rx.T
\# \# check R @ R.T
\# print(R @ R.T)
\# \# check determinant
\# print(np.linalg.det(R))
$\mathrm{M}[: 3,: 3]=\mathrm{R}$
glMultMatrixf(M.T)
glScalef(.25,.25,.25)
\# draw cubes
glMaterialfv(GL_FRONT,
GL_AMBIENT_AND_DIFFUSE, (.5,.5,.5,1.))
drawCube_glDrawArray()
glTranslatef (2.5,0,0)
glMaterialfv(GL_FRONT,
GL_AMBIENT_AND_DIFFUSE, (1.,0.,0.,1.))
drawCube_glDrawArray()
glTranslatef(-2.5,2.5,0)
glMaterialfv (GL_FRONT,
GL_AMBIENT_AND_DIFFUSE, (0.,1.,0.,1.))
drawCube_glDrawArray()
glTranslatef ($0,-2.5,2.5$)
glMaterialfv (GL_FRONT,
GL_AMBIENT_AND_DIFFUSE, (0.,0.,1.,1.))
drawCube_glDrawArray()
glDisable(GL_LIGHTING)

Rotation Matrix for Rotation about an Arbitrary Axis

- Recall Euler's Rotation Theorem:
- Arbitrary 3D rotation equals to one rotation around an axis
- How to compute the rotation matrix for given axis vector $\mathrm{u}=\left(\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}}\right)$ by angle θ ?
- A naive, inefficient method:
- Step 1: rotate the axis u so that it is aligned with the Z -axis
- Step 2: rotate about the Z-axis by the angle θ
- Step 3: rotate the Z-axis back to the original axis
- For details, see 9-reference-naive-rotvec2rotmat.pdf

Rotation Matrix for Rotation about an Arbitrary Axis

- More efficient solution: Rodrigues' rotation formula
- Rotation about a normalized axis vector $\mathrm{u}=\left(\mathrm{u}_{\mathrm{x}}, \mathrm{u}_{\mathrm{y}}, \mathrm{u}_{\mathrm{z}}\right)$ by angle θ :

$$
R=\left[\begin{array}{ccc}
\cos \theta+u_{x}^{2}(1-\cos \theta) & u_{x} u_{y}(1-\cos \theta)-u_{z} \sin \theta & u_{x} u_{z}(1-\cos \theta)+u_{y} \sin \theta \\
u_{y} u_{x}(1-\cos \theta)+u_{z} \sin \theta & \cos \theta+u_{y}^{2}(1-\cos \theta) & u_{y} u_{z}(1-\cos \theta)-u_{x} \sin \theta \\
u_{z} u_{x}(1-\cos \theta)-u_{y} \sin \theta & u_{z} u_{y}(1-\cos \theta)+u_{x} \sin \theta & \cos \theta+u_{z}^{2}(1-\cos \theta)
\end{array}\right]
$$

(You do not have to memorize this)

Quiz \#3

- Go to https://www.slido.com/
- Join \#cg-hyu
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Quaternions

- Complex numbers can be used to represent 2D rotations

$$
z=x+i y \text { where } i^{2}=-1
$$

- Basic idea: Quaternion is its extension to 3D space

$$
\begin{aligned}
& q=w+i x+j y+k z \quad \text { where } \\
& i^{2}=j^{2}=k^{2}=i j k=-1 \\
& i j=k, \quad j k=i, \quad k i=j \\
& j i=-k, k j=-i, i k=-j
\end{aligned}
$$

Unit Quaternions

- Unit quaternions represent 3D rotations

$$
\begin{aligned}
\mathbf{q} & =w+i x+j y+k z \quad w^{2}+x^{2}+y^{2}+z^{2}=1 \\
& =(w, x, y, z) \\
& =(w, \mathbf{v})
\end{aligned}
$$

- Rotation about axis $\hat{\mathbf{v}}$ by angle θ

$$
\mathbf{q}=\left(\cos \frac{\theta}{2}, \hat{\mathbf{v}} \sin \frac{\theta}{2}\right)
$$

$$
\mathbf{p}^{\prime}=\mathbf{q} \mathbf{p q}^{-1} \quad \text { where } \quad \mathbf{p}=(0, x, y, z)
$$

Unit Quaternions

- For details, see 9-reference-quaternions.pdf
- Antipodal equivalence
-q and -q represent the same rotation
- 2-to-1 mapping: Each individual rotation is represented by two quaternions

Which Representation to Use?

- 3D orientation \& rotation representation
- Euler angles
- Rotation Vector (Axis-Angle)
- Rotation matrices
- Unit quaternions
- Which one to use?
- General recommendation: rotation matrices or unit quaternions.
- But you may need other representations depending on the context.
- Euler angles are useful for hardware implementation of ball joints.

Which Representation to Use?

- Reason: Euler angles and axis-angle have problems
- Euler angles
- Discontinuity (or many-to-one correspondences)
- Gimbal lock
- Rotation Vector (Axis-Angle)
- Discontinuity (or many-to-one correspondences)

Which Representation to Use?

- Rotation matrices and unit quaternions do not have discontinuity or gimbal lock problems
- Because they use more parameters (rotation matrix: 9, unit quaternion: 4) than DOFs of 3D orientation/rotation (3)
- Rotation matrices vs. Unit quaternions ?

Rotation Matrix vs. Unit Quaternion

- Equivalent in many aspects
- Redundant
- No singularity
- Can be converted from \& to axis-angle representation
- Why quaternions ?
- Fewer parameters
- Simpler algebra
- Easy to fix numerical error
- Why rotation matrices?
- One-to-one correspondence
- Handle rotation and translation in a uniform way
- Eg) 4×4 homogeneous matrices

Conversion Between Representations

- Rotation vector \rightarrow Rotation matrix
- Rodrigues' rotation formula, ...
- Rotation matrix \rightarrow Rotation vector
- Several ways, we'll see one of them in next lecture.
- Euler angles \rightarrow Rotation matrix
- Building canonical rotation matrices $\left(\mathbf{R}_{\mathrm{x}}, \mathbf{R}_{\mathrm{y}}, \mathbf{R}_{\mathrm{z}}\right)$ and composing them
- Rotation matrix \rightarrow Euler angles
- Several ways, but not covered in this class
- Unit quaternion \leftrightarrow Rotation matrix
- Several ways, but not covered in this class

Next Time

- Lab in this week:
- Lab assignment 9
- Next lecture:
- 10 - Animation
- Class Assignment \#2
- Due: 23:59, May 24, 2019
- Acknowledgement: Some materials come from the lecture slides of
- Prof. Jehee Lee, SNU, http://mrl.snu.ac.kr/courses/CourseGraphics/index 2017spring.html
- Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cgi
- Prof. Kayvon Fatahalian and Prof. Keenan Crane, CMU, http://15462.courses.cs.cmu.edu/fall2015/
- Prof. Sung-Hee Lee, KAIST

