
Computer Graphics

1 - Lab: Environment Setting for Lectures &

Assignments

Yoonsang Lee

Spring 2021

Introduction

• TA: 김민관

– palkan21@naver.com

• Undergraduate Mentor: 사정

Topics Covered

• Installing Python Interpreter

• Python 2 & Python 3

• Installing Additional Python Modules

• Running Python Interpreter

• Creating a Gitlab account

• Time for Lab Assignment 1

Install Python Interpreter

• Python 3.7 or later

– https://www.python.org/downloads/

• Note that all submissions for assignments should

work in Python 3.7.

• You can use any OS that runs Python.

https://www.python.org/downloads/

Python 2 & Python 3

• Python 2 is still in active use.

• Python 3 is the future of Python.

– A lot of very useful features & fixes for well-known problems

– To do this, Python 3 breaks backward compatibility.

• If you’re familiar with Python 2, you have to know the

difference between Python 2 and 3.

– The following link would be helpful:

– http://sebastianraschka.com/Articles/2014_python_2_3_key_

diff.html

http://sebastianraschka.com/Articles/2014_python_2_3_key_diff.html

Install Python Packages (Modules)

• My recommendation for installing python modules

is using pip (Python Package Index).

– pip is a program that helps you install most of the python

package.

– pip is already installed if you are using Python 2 >=2.7.9

or Python 3 >=3.4 downloaded from python.org

• Usage:

pip install <package_name>

Python Virtual Environments

• Example: Two python projects on the same machine,

– Project A are based on Django 1.11

– Project B are based on Django 2.1.7

– Python interpreter cannot differentiate between versions of
Django packages! (So you can run only one of them)

• Python virtual environment:

– A self-contained directory tree that contains a Python
installation for a particular version of Python, plus a number
of additional packages.

– You can keep dependencies required by different projects
separate by creating "isolated" python virtual environments
for them.

Python Virtual Environments

• It is generally good to have one virtual

environment for each Python project you work

on.

– So the dependencies of every project are isolated from

the system and each other.

• Two most popular tools:

– virtualenv

– Anaconda

Install virtualenv & virtualenvwrapper

• Windows

• Ubuntu

> pip install virtualenv virtualenvwrapper-win
(or)
> py -3 -m pip install virtualenv virtualenvwrapper-win

if you don't have pip, install it first.
$ sudo apt-get install python3-pip

$ sudo pip3 install virtualenv virtualenvwrapper

Add the following lines to ~/.bashrc:
export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3
source /usr/local/bin/virtualenvwrapper.sh

$ source ~/.bashrc

(You can skip this process if you're already using virtualenv or Anaconda.)

Install virtualenv & virtualenvwrapper

• MacOS

Install Homebrew(package manager for mac OS) from
below link.
https://brew.sh/index_ko

if you install python3 using Homebrew, pip and pip3
would be installed automatically.
$ brew install python3

$ pip3 install virtualenv virtualenvwrapper

Add the following line to ~/.bashrc:
export VIRTUALENVWRAPPER_PYTHON=/usr/local/bin/python3
source /usr/local/bin/virtualenvwrapper.sh

$ source ~/.bashrc

https://brew.sh/index_ko

How to use virtualenvwrapper

Create an environment
$ mkvirtualenv --python=PATH_TO_PYTHON ENVNAME

Remove an environment
$ rmvirtualenv ENVNAME

List all of the environments
$ lsvirtualenv

Activate an environment
$ workon ENVNAME

Deactivate the current environment
$ deactivate

Create an environment for this class

• Windows

– An example for <python_path>:

"C:\Users\<your_id>\AppData\Local\Programs\Python\Python35\p

ython.exe“

– If your system does not know “mkvirtualenv”, you need to add

python script directory (e.g. …\Python35\Script\) to system path.

• Ubuntu, MacOS

– Replace <python3.x> with your python version

– e.g. --python=python3.7

> mkvirtualenv --python=<python_path> cg-course

> mkvirtualenv --python=<python3.x> cg-course

Activate the environment

• Then you can see the name of your environment in

the command prompt.

• You can run the exact version of python interpreter

specified in the environment just by typing

"python".

$ workon cg-course

Install Additional Modules

• We’ll use a few python modules in this class

– NumPy, PyOpenGL, glfw

• In the "cg-course" environment by activating it,

• NumPy

– Windows, Ubuntu, MacOS

$ pip install numpy

$ workon cg-course

Install Additional Modules

• PyOpenGL

– Windows

• or, you can also try the "pip install pyopengl" route for windows. But

in that case the pyopengl installer wouldn't install the GLUT library

properly. You can manually install GLUT and copy glut32.dll to

"python-installation-directory/Lib/site-packages/OpenGL/DLLS"

– http://www.cim.mcgill.ca/~fmannan/comp557/Python%20and%20PyOpen

GL%20Installation.html

– Ubuntu, MacOS

$ pip install PyOpenGL

> pip install pipwin
> pipwin install pyopengl

http://www.cim.mcgill.ca/~fmannan/comp557/Python%20and%20PyOpenGL%20Installation.html

Install Additional Modules

• GLFW

– Windows, MacOS

– Ubuntu

$ pip install glfw

$ sudo apt-get install libglfw3
$ pip install glfw

Install Additional Modules

• GLFW

– Windows

• If you are experiencing this error, download glfw library for the window at

the following URL. Copy “lib-vc2015/glfw3.dll” to "python-installation-

directory/Lib/site-packages/glfw"

• https://www.glfw.org/download.html

https://www.glfw.org/download.html

• Interactive mode

– Windows: Start, type “cmd”,

– Ubuntu: Start, type “terminal”,

– Suitable for simple tests

– To exit the interpreter, type exit() and press enter key.

Running Python Interpreter 1

> py -3

$ python3

Running Python Interpreter 2

• Non-interactive mode (runs a source file)

– Windows

– Ubuntu

– In most cases, you will use this mode.

• You can write a Python source file using your

favorite editor.

– Vim, Notepad++, Sublime Text, Atom, IDLE …

– I’m personally using vim & gvim.

> py -3 test.py

$ python3 test.py

Python References

• https://docs.python.org/ko/3/tutorial/index.html

• https://docs.python.org/3/tutorial/index.html

• https://www.tutorialspoint.com/python3/

https://docs.python.org/ko/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://www.tutorialspoint.com/python3/

Creating a Gitlab account

Gitlab

• For today's lab assignment, submit your files via

Blackboard course homepage.

• From next week's lab assignment, submit your files via

the gitlab at https://hconnect.hanyang.ac.kr/

• Be sure to create a hconnect account in advance.

• If you already have a hconnect account, just skip this

part.

https://hconnect.hanyang.ac.kr/

Git

• Access to https://hconnect.hanyang.ac.kr/

Git

• Login hanyang account

Git

• Consent for information provision

agree

Git

• Set up Password

Git

• Set up Password

Initial password: Your HY-in
portal password

Git

• Set up Email

Git

• Set up Email – Approve from changed email

Git

• After this, you can sign in to hconnect with your student ID / email and

the password you changed.

(without using 'Sign in with Hanyang')

Lab Assignment 1

• Now, let’s start the lab assignment 1.

• Lab assignment 1 is just for practice, will not be included in the final
grade.

• However, you need to complete and submit your answers to figure out
how to set up the environment and to create your "hconnect" site
account in advance.

• Check the assignment: Blackboard course home - Lab assignments -
“LabAssignment1.pdf”

• Submit your files: Blackboard course home - Lab assignments - “Lab
Assignment 1, 1” and " Lab Assignment 1, 2".

• You can leave the lab after submitting your files.

