Computer Graphics

12 – More Lighting, Texture

Yoonsang Lee Spring 2021

기말고사 재공지

- 일시: 6월 **7일 (월**) 오전 9시~11시
- 전면 온라인 시험 (LMS의 시험 기능 이용)
- ・ 오픈북 시험 아님!

Topics Covered

- More Lighting
 - BRDF
 - Local vs. Global Illumination

- Texture Mapping
 - Texture Coordinates & UV Mapping
 - Various Uses of Texture Maps

More Lighting

Recall: Reflection of General Materials

• Many materials' surface have both diffuse reflection and specular reflection.

- We can represent reflectance properties of a surface as a **distribution function**.
- \rightarrow **BRDF**

Bidirectional Reflectance Distribution Function (BRDF)

- Defines how light is reflected at an opaque surface.
 - θ_i, ϕ_i : incoming light direction
 - θ_e, ϕ_e : outgoing light direction
 - f_r returns the ratio of reflected radiance exiting along outgoing direction

Examples of BRDF (theoretical approximation, not from measurement)

Measuring BRDF

- BRDFs of specific materials can be measured using devices like this:
 - Basic idea: rotating light source & rotating sensor

Image credit: Chuck Moidel

How to use BRDF Data?

Nickel

Hematite

Gold Paint Pink Felt One can make direct use of acquired BRDFs in a renderer

[Practice] MERL BRDF Database

- MERL BRDF Database A database containing measured BRDFs of 100 different materials
 - "A Data-Driven Reflectance Model", Wojciech Matusik, Hanspeter Pfister, Matt Brand and Leonard McMillan, SIGGRAPH 2003
 - <u>https://www.merl.com/brdf/</u>, but the BRDF download link is broken!
 - Instead, download 12 MERL BRDF samples.zip from the course homepage.
- Viewer
 - BSDF Processor: <u>https://github.com/KimuraRyo/BSDFProcessor</u>

💩 gray-plastic.binary - BSDF Processor	- 🗆 ×
<u>Eile ⊻iew P</u> rocessors <u>H</u> elp	
	Controller Image: Controller Graph mode: Photometry Incoming polar angle: 45 Incoming azimuthal angle: 0,000 Channel: 0
	Render view 5 X
	Light polar angle: Light azimuthal angle: Light intensity: Environment intensity: 0,0 0,0 1,000 0,
	Picked direction 🗗 🗙
	Parameters
	Spherical coordinate system 🗸 🗸
	Incoming polar angle:
	Incoming azimuthal angle:
	Outgoing polar angle:
	Show arcs of angle in graph
	Value: Reflectance: 0,115636

BRDF of gray plastic

Quiz #1

- Go to <u>https://www.slido.com/</u>
- Join #cg-ys
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Local vs. Global Illumination

- Local (or direct, or non-global) illumination
 - Models the direct illumination of object surfaces by light sources
 - Can be rendered fast, but less realistic (unrealistic)
 - e.g. Phong illumination model

Local vs. Global Illumination

Global illumination

- Direct illumination + Indirect illumination (All interobject reflections)
- Slow, but much more realistic
- e.g. Ray tracing, Path tracing, Radiosity

Phong Illumination Model & Local, Global Illumination

• Phong illumination model is basically a local illumination model.

• Indirect illumination is severely approximated by the ambient component.

Ambient

Phong Illumination Model & BRDF

- Local illumination model
 - Models the direct illumination of object surfaces by light sources.
 - No other than modeling BRDFs!
- Phong's model models BRDFs with
 - a hemisphere (by diffuse component)
 - and a lobe (by specular component using $\cos^n(\alpha)$)

Quiz #2

- Go to <u>https://www.slido.com/</u>
- Join #cg-ys
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Texture Mapping

How to add surface details?

- Option 1:
- Model the surface with more polygons
 - Slows down rendering speed
 - Hard to model fine features

(3.3 million polygons)

How to add surface details?

- Option 2:
- Map a **texture** to the surface
 - More details with less polygons
 - Much faster rendering speed!
 (because image complexity does not affect complexity of processing)

Examples of Texture Mapping

Examples of Texture Mapping

Texture Mapping

- A technique of defining surface properties as a function of position on the surface
 - usually with texture images (or texture maps)
- What can you put in a texture map?
 - Diffuse color, specular color
 - Specular exponents, transparency or reflectivity coefficients
 - Surface normal
 - Projected reflections or shadows

(bold text indicates most commonly used properties)

Examples of Diffuse, Specular, Normal Map

diffuse map

specular map

normal map

https://www.models-resource.com/mobile/marvelscontestofchampions/model/15341/

Examples of Diffuse, Specular, Normal Map

REVOLLO.ROMEL@GMAIL.COM

Mapping textures to surfaces

- "Putting the image on the surface"
 - this means we need a function *f* that tells where each point on the image goes

Texture Coordinate Function

- Usually be thought as an inverse function: "Putting the surface on the image"
 - : Texture coordinate function
- or UV mapping

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Texture Mapping Technique (1/8)

- Done in two steps:
 - Map a point on object to a point on unit square (a proxy for the actual texture map)
 - Map unit square point to point on texture

- The second mapping is easy; it's just scaling and automatically performed by system
- What we have to focus on is the first step; texture coordinate function.
- Texture coordinate function determines which texture coordinates (u,v) each vertex has.

Texture coordinates

"Texture coordinates" define a mapping from surface coordinates (points on triangle) to points in texture domain.

myTex(u,v) is a function defined on the [0,1]² domain:

myTex : $[0,1]^2 \rightarrow$ float3 (represented by 2048x2048 image)

Location of highlighted triangle in texture space shown in red.

Final rendered result (entire cube shown).

Location of triangle after projection onto screen shown in red.

Texture Coordinates for a Triangle

- You have to specify (u,v) for each vertex
 - Recall that texture coordinates are one of vertex attributes in OpenGL
 - Texture coordinate : specified by glTexCoord*()
- (u,v) for interior points are interpolated (by barycentric interpolation)

More complex mapping

Each vertex has a coordinate (u,v) in texture space. (Actually coming up with these coordinates is another story!)

Simple texture mapping operation

a pixel of an object on the screen
for each covered screen sample (x,y):
 (u,v) = evaluate texcoord value at (x,y)
 float3 texcolor = texture.sample(u,v);
 set sample's color to texcolor;

Texture mapping adds detail

Texture mapping adds detail

rendering without texture

rendering with texture

texture image

Each triangle "copies" a piece of the image back to the surface.

- Launch Blender
 - Download it from https://www.blender.org/download/
- Delete the default cube using 'del' key
- File Import obj open *car.obj*
 - Download 12-car.zip from our lecture home and extract it
- Change viewport shading type to 'Material Preview' mode.

• Drag the upper right corner of the view to left to split it

• Change the left view type to UV Editor

🔊 Blandar

-0	Dici	naci											
ব	ð ⊦	ile Edit	Render	Window	Help	Layout	Modeling	Sculpting	UV Editing	Texture P	aint Shading	Animation	Rendering
	<u>⊧</u> •	F							٦2	Global 🗸	ଡ଼ୣ୵ୢୄ୕୕ୖ୵୲୴ୢ୵	$\mathbf{O} \mathbf{A} $	
	Gene	eral et Mo			Ad Anir	nation		Scripting	I		Data		
	# ¶ :	3D Viewp	orterspecti		F5 🍕	Dope Sheet	Shift F12	Te <u>x</u> t	Editor	Shift F11	E Outliner	Shift F9	
		Image Ed	itorection	Shift F	F10 🔇	Timeline	Shift F12	Pytł	non Console	Shift F4	吕 Properties	Shift F7	
	18 y	UV Editor		Shift I	F10 🏒	Graph <u>E</u> dito	r Shift F6	i 🚺 Info			📕 <u>F</u> ile Browse	er Shift F1	
	<u> </u>	Composit	or		FB * 2	Drivers	Shift F6				🌣 Preference	s	
	×	<u>T</u> exture N	lode Edito	UV edit in	mesh edi	mode. A	nimation						
	_) (Geometry	/ Node Ed	Shortcut: S	Shift F10								
	0	Shader Eo	ditor										
L	\ \	Video Sec	quencer	Shift	: F8								

• Click the car model on the right view and press tab to change to the Edit Mode

- Now you'll be able to see the UV map of the car model on the left view
 - If you cannot see vertices in UV Editor (left view), click
 3D View (right view) and press 'a' to select all vertices in Edit mode.

- Try to move vertex positions in UV Editor.
 - In the UV Editor, click a vertex shift + space move the vertex.

- Try to "paint" the texture.
 - Change the left view type to Image Editor
 - In the Image Editor, switch the mode to 'Paint'.
 - Select 'Draw' tool and draw as you want.

How to Make a UV Map for an Object?

- Projections to parametric surfaces
 - For objects similar to parametric surfaces such as a rectangle, sphere, cylinder
- Automatic "unwrapping" algorithms
 - For objects with complex shapes
- Generated texture coordinates are often further adjusted by artists

• Spherical projection

- Automatic "unwrapping" algorithms
 - Some kind of "optimization" algorithms can be used to "unwrap" the objects, which tries to choose vertex (u,v)s to result in a smooth, low distortion map
 - Different algorithms are provided by different modeling software (such as Blender, Maya, ...)

Quiz #3

- Go to <u>https://www.slido.com/</u>
- Join #cg-ys
- Click "Polls"
- Submit your answer in the following format:
 - Student ID: Your answer
 - e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Various Uses of Texture Maps

- Texture maps are used for various purposes:
- To add surface details
 - Diffuse & specular property
 - Surface normal / height differences
 - ...
- To model lighting / environment
 - Light
 - Shadow
 - Environment
 - ...

cs123 INTRODUCTION TO COMPUTER GRAPHICS

Overview: Surface Detail

Observation

- What if we replaced the 3D sphere on the right with a 2D circle?
- The circle would have fewer triangles (thus renders faster)
- If we kept the sphere's normals, the circle would still look like a sphere!
- Works because human visual system infers shape from patterns of light and dark regions ("shape from shading"). Brightness at any point is determined by normal vector, not by actual geometry of model

Image credit: Dave Kilian, '13

Idea: Surface Detail

- Start with a high-poly (high polygon count) model
- Make a low-poly model (remove triangles)
- Encode high-poly normal information into texture
- Map texture (i.e., normals) onto low-poly mesh

Original high-poly model

Low-poly model with high-poly model's normals preserved

Normal Mapping Example

original mesh 4M triangles simplified mesh 500 triangles simplified mesh and normal mapping 500 triangles

Normal mapping can completely alter the perceived geometry of a model

Image courtesy of <u>www.anticz.com</u>

Normal Mapping

- Idea: Encode normal vectors into RGB values of each pixel in a texture map
- *RGB values of each pixel* indicates the *u*, *v*, *w component of the normal vector* at the pixel's location

$$- e.g. R = N_U, G = N_V, B = N_W$$

- U: -1 to +1 \rightarrow Red: 0 to 255
- V: -1 to +1 \rightarrow Green: 0 to 255
- W: 0 to $+1 \rightarrow$ Blue: 128 to 255

Tangent space normal map

Blue is predominant as the object normals typically face the viewer $\sim(0, 0, 1)$ and get mapped to $\sim(128, 128, 255)$ in tangent space.

Bump Mapping

- Similar to normal mapping
- Idea: instead of encoding normals themselves in the map, encode relative heights
 - Black: minimum height delta
 - White: maximum height delta
- Normals are compute from a height map, and then applied

Bump Mapping: Example

Original object (plain sphere)

Bump map (height map to perturb normals) Sphere with bump-mapped normals

http://cse.csusb.edu/tongyu/courses/cs520/notes/texture.php

Displacement Mapping

- Actually move the vertices by looking up height deltas in a height map
 - Unlike bump/normal mapping, this will produce correct silhouettes and self-shadowing
- By default, does not provide detail between vertices like normal/bump mapping
 - To increase detail we have to add more vertices, thus can become very costly

http://en.wikipedia.org/wiki/Displacement_mapping http://www.nvidia.com/object/tessellation.html https://support.solidangle.com/display/AFMUG/Displacement

[Practice] Online Demos

- Normal mapping / Displacement mapping
 - <u>https://threejs.org/examples/#webgl_materials_displace</u>
 <u>mentmap</u>

- Bump mapping
 - <u>https://threejs.org/examples/#webgl_materials_bumpma</u>
 <u>p</u>

Light maps in Quake

Light maps are used to store pre-computed illumination

	Texture Maps	Light Maps
Data	RGB	Intensity
Resolution	High	Low

Textures & Light Maps

Light map image by Nick Chirkov

Shadow maps

Environment maps

- Simulate complex mirror-like objects
 - Use textures to capture environment of objects
 - Use surface normal to compute texture coordinates

[Practice] Online Demos

- Light mapping
 - <u>https://threejs.org/examples/?q=light#webgl_materials_lightm</u>
 <u>ap</u>
- Shadow mapping
 - <u>https://threejs.org/examples/#webgl_shadowmap</u>
- Environment mapping
 - <u>https://threejs.org/examples/#webgl_materials_cubemap_dyn</u> <u>amic</u>
 - <u>https://threejs.org/examples/#webgl_materials_cubemap_ball</u>
 <u>s_refraction</u>

Many details remain

- Cannot cover every details of texture mapping
 - Texture mapping in OpenGL
 - Magnification / minification, filtering, mipmap
 - Tiling / stretch
 - Details in various uses of texture mapping

• We've covered key ideas and important applications of texture mapping.

Next Time

- Lab in this week:
 - 기말고사 원격시험 환경 설정 및 테스트 시험 1

- Next, the last lecture:
 - 13 Rasterization & Visibility

- Acknowledgement: Some materials come from the lecture slides of
 - Prof. Andy van Dam, Brown Univ., http://cs.brown.edu/courses/csci1230/lectures.shtml
 - Prof. Sung-eui Yoon, KAIST, <u>https://sglab.kaist.ac.kr/~sungeui/CG/</u>
 - Prof. Kayvon Fatahalian and Prof. Keenan Crane, CMU, <u>http://15462.courses.cs.cmu.edu/fall2015/</u>