Computer Graphics

13 - Rasterization & Visibility

Yoonsang Lee
Spring 2021

- [t €2 FEARA= U452 & U AMe=0] U=,

» AN =3 £O0|LE HE[7F 72t 2 20|X| & - 3%+
« 7MH2t 52 ELEH 422 Q6 2tHO| H E0|X| S -6

- SIO|L} 2L H &f7[0f 2[5l 2tHO| & HO|X| = -9+
o =3JEl FAO0| 90k P UAS -2H +

- FHO|| Ct2 C|HIO|A AT EO| EXY - 6H +

« AN ZF AT PCECHE ZHE & -5+

- 7027t =H|E[X] K= - 108+

- U A= ZoHAE 20| 25 J&0| {oli=7| Bt LT
Z

Topics Covered

Two Approaches for Rendering
— Object-oriented (Rasterization)
— Image-oriented (Raytracing)

« Rasterization (in a narrow sense)
— Line / Polygon Drawing

 Visibility Problem
— Clipping (Viewing frustum culling)

— Back-face culling
— Hidden surface removal

» Rendering (Graphics) Pipeline Again

* Course Wrap-up

Recall: Rendering (Graphics) Pipeline

[vertex L fragment
: |—| rasterization |—| : If
processing processing

. performs a : assembles . determines v

sequence of vertex polygons & converts color of each _

transformations each polygon into a fragment with {Output merglng}
set of fragments light & texture

(pixels)

Two Approaches for Rendering - 1

for each object in scene

transform the object to viewport # vertex processing

find pixels for the object # rasterization (in a narrow sense)

set color of the pixels based on texture and lighting
mode 1 # fragment

......- pfOC@SS/hg

(triangle is rendered to screen)

« This is called rendering (graphics) pipeline
* Or rasterization (in a broad sense)

 or object-oriented rendering.

Two Approaches for Rendering - 2

for each pixel in image(film plane)
determine which object should be shown at the pixel
set color of the pixel based on texture and lighting model

N
EEE
EEE
EED
(ray intersection is rendered to screen) Il
1]

film plane

* This is called ray tracing
* or image-oriented rendering.

« We’ll skip ray tracing part, see 13 - reference-
RayTracing.pdf for more information about it.

Rasterization (in a broad sense) & Ray Tracing In
this Course

* Most topics we’ve covered are fundamental concepts
of computer graphics, regardless of these two rendering
approaches.

— Transformations, Hierarchical Modeling, Orientation &
Rotation, Kinematics & Animation

— Mesh, Lighting & Shading, Curves, Texture Mapping

» EXcept some topics:

— Rendering Pipeline, Viewing / Projection / Viewport
transformations

— Rasterization & Visibility (today’s topic)
« are specific to rasterization (in a broad sense).

Rasterization (In a narrow sense)

« Rasterization converts vertex representation to pixel
representation (fragments)

 First job: Compute which pixels belong to a primitive
— to enumerate the pixels covered by the primitive

« Second job: Interpolate values across the primitive
— e.g. colors computed at vertices
— e.g. normals at vertices

Rasterization (In a narrow sense)
« Aprimitive can be a point, line, or polygon

 Line drawing algorithms
— Digital differential analyzer (DDA)
— Bresenham's (a.k.a. Midpoint)
— Xiaolin Wu's

 Polygon drawing algorithms
— Scanline
— Boundary fill
— Flood fill

Rasterization (In a narrow sense)

« But, we'll just skip details of these algorithms.

« Actually, line drawing and polygon drawing are not so easy as one
might think.

— Computational efficiency, anti-aliasing, ...

« But most graphics APIs (including OpenGL) basically support these
operations.

— These algorithms were intensively studied in early days of computer graphics,
SO quite mature now.

— Now basic algorithms are implemented in graphics hardware (GPU) and you
can use them by calling such graphics APIs.

* So nowadays you can think lines and polygons as “primitives” that are
basically rendered.

Visibility Problem

* What is VISIBLE?

Red: viewing frustum, Blue: objects

Visibility Problem

 The answer IS:

The camera view

1

Visibility Problem

* What is NOT VISIBLE?

Visibility Problem

* What is NOT VISIBLE?

* Primitives outside of the
viewing frustum

Visibility Problem

* What is NOT VISIBLE?

* Primitives outside of the
viewing frustum

« Back-facing primitives

Visibility Problem

* What is NOT VISIBLE?

* Primitives outside of the
viewing frustum

« Back-facing primitives

* Primitives occluded by other
objects closer to the camera

Visibility Problem

* These invisible primitives
should be removed because...

* No need to spend time to process
Invisible vertices and polygons.

« A close object must hide a farther
one.

* S0, removing these primitives is
required for efficient and correct
rendering.

Visibility Problem

* Removing...

* Primitives outside of the viewing frustum
* — Clipping (Viewing frustum culling)

« Back-facing primitives
« — Back-face culling

* Primitives occluded by other objects closer to the camera

e — Hidden surface removal

Clipping (Viewing Frustum Culling)

* Removing primitives outside of
the viewing frustum

» Clipping is much easier with —\

canonical view volume. J l | ‘ 1l \
I

— actually done in clip space

Clipping (Viewing Frustum Culling)

 Line clipping algorithms
— Cohen—Sutherland
— Liang—Barsky

— Cyrus—Beck

 Polygon clipping algorithms
— Sutherland—Hodgman
— Weiler—Atherton

Clipping (Viewing Frustum Culling)

Polygon clipping algorithms are more complicated.
— \ertices may be added to or deleted from the triangle.

* Again, let’s just skip details of these algorithms.

triangle — quad

« Most graphics APIs (including OpenGL) performs
clipping by default.

— You just set the view frustum, then OpenGL will do clipping for
you.

« 13 - reference-rasterization,clipping.pdf has brief slides
about DDA (line drawing) & Cohen-Sutherland algorithms
(line clipping). If you're interested, please refer it.

Back-Face Culling

* Removing back-facing primitives

« Determined by the dot product of
normal and view (camera)
vectors.

C3 .

n3-c3 =0
n3
edge-on face T
o < -f"
Discard! /tg,\ ‘ I\
[T J,-f'r "-, / I. \\II _,:'
O ' /},\:{______.___i—:: {____?7:'//\
back face X\\ /\ \\ A
MV

n2-c2 <)

front face

Back-Face Culling

» Back-face culling iIs much more efficient when
performed in canonical view volume.

— Because In canonical view volume, we can use a single
view vector, (0,0,1).

view
vector
(0,0,1)

CAMETa space

(in RHS)

Back-Face Culling

. ﬂ.r/rd 'A

.\v\-/’

\\\..\ ’,‘.’lf/

\\\\ W '/d///
\Q)\‘)ﬂo/ ///

\ ,V/,«llhqm.ﬂ .ﬁ r‘”“V\A\&; 121
\» G
&2

///’I ..l\\.\\\

v/

L4
)
{

Back-Face Culling in OpenGL

e Can cull front faces or back faces
e Back-face culling can sometimes double

performance
if (cull): (initial value: GL_CCW)
glFrontFace (GL_CCW) # define winding order
glEnable (GL_ CULL FACE) # enable Culling(initially disabled)
glCullFace (GL_BACK) # which faces to cull
else:

glDisable (GL_CULL FACE)

You can also do front-face culling!

¢ ¥) Pl {
R . L
\ s N
S
1 ’

s G yhe 4
\ ! i
\ 1 .

25

Hidden Surface Removal

* Removing primitives occluded by
other objects closer to the camera

* Also known as

— Hidden Surface Elimination

— Hidden Surface Determination
— Visible Surface Determination
— Occlusion Culling

Hidden Surface Removal

« Many algorithms
— Z-buffer (Depth buffer)

— Painter’s algorithm
— BSP tree

o Z-buffer iIs the standard method.

* Let’s see the 1deas of Painter’s algorithm & Z-

buffer.

Frame Buffer (background knowledge for
understanding HSR algorithms)

* Frame buffer is the portion of memory to hold the
bitmapped image that Is sent to the (raster) display device.

« A frame buffer is characterized by its

width, height, and depth.

— E.g. The frame buffer size for 4K UHD

resolution with 32bit color depth = 3840 x

2160 x 32 bits

* Typically stored on the graphic card’s memory.

— But integrated graphics (e.g. Intel HD Graphics) use the main
memory to store the frame buffer.

Painter’s algorithm

e Simplest way to do hidden surfaces

e Draw from back to front, use overwriting in
framebuffer

e Requires sorting all polygons by their depth

Cornell CS4620 Fall 2008 ® Lecture 10 © 2008 Steve Marschner ¢ 2
0]

Weakness of Painter’s Algorithm

* What if there are cycles in the sorted
graph?
— The only solution is dividing these
polygons into small pieces.

* Need to update the sorted graph
whenever camera or object location is
changed. '

* — Time-consuming!

The z buffer

* In many (most) applications maintaining a z sort is too
expensive
— changes all the time when the view changes
— many data structures exist, but complex

e Solution: draw in any order, keep track of closest

— Z-buffer keeps track of closest depth so far

— when drawing, compare object’s depth to current closest
depth and discard if greater

Cornell CS4620 Fall 2008 o Lecture 10 © 2008 Steve Marschner ¢ 3
1

Z-Buffering: Algorithm
allocate depth buffer; // Allocate depth buffer - Same size as viewport.

for each pixel (x,y) // For each pixel in viewport.
write frame buffer (x,y,backgrnd color); //Initialize color.
write depth buffer (x,y,farPlane depth); //Initialize depth (z) buffer.

for each polygon // Draw each polygon (in any order).
for each pixel (x,y) in polygon //Rasterize polygon.
color = polygon’s color at (x,y):;
p, = polygon’s z-value at (x,y) ;//Interpolate z-value at (x, y).

if (p, < read depth buffer(x,y)) // If new depth is closer:
write frame buffer (x,y,color); // Write new (polygon) color.
write depth buffer(x,y,p,); // Write new depth.

Frame buffer Z-buffer (Depth buffer)

Example: rendering three opaque triangles

]] ® e ®] ® ® []
[] [] ® ® [] [] ® ® []
o [[] ([] ® [] ® ® []

(MU 15-418/618, Fall 2015

Occlusion using the depth-buffer (Z-buffer)

Processing yellow triangle:
depth=0.5

O O O O O O O

o @] O O O O O

Color buffer contents

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

@] @) @) O O O O

O O O] [] O @]

O O O O O O O

O O @) O @] O o

Depth buffer contents

(MU 15-418/618, Fall 2015

Occlusion using the depth-buffer (Z-buffer)

After processing yellow triangle:

O O O

O O O

Color buffer contents

O

o

Grayscale value of sample point

used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

0] o
o @]
O o
O o
O O
O []
@ []
o O
o @]

O

O

O

@]

O

O

O

O

@]

Depth buffer contents

O O
O O
@) O
® O
® O
O @
® []
O O
O O

CMU 15-418/618, Fall 2015

Occlusion using the depth-buffer (Z-buffer)

Processing blue triangle:

depth=0.75

O @] O O
O O O O
o O O O
O O O

O o

O O O O
O O O O

Color buffer contents

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

@)

O O O &) o @] O

Depth buffer contents

(MU 15-418/618, Fall 2015

Occlusion using the depth-buffer (Z-buffer)

After processing blue triangle:

O O

O O

O

O O O O O O

O @) O O @) o O @)

Color buffer contents

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

o O @] o O O o

@] O e o O O
O O ®] O Q
o [] o e e O

o o [] e @ @ e
O O o O O o

O O O O O @) O

Depth buffer contents

(MU 15-418/618, Fall 2015

Occlusion using the depth-buffer (Z-buffer)

Processing red triangle:
depth =0.25

O ® [O O O

O O O O @] O

Color buffer contents

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O ®}
O O
O O
] O
e o
® ®
o L o o L] o

Depth buffer contents

(MU 15-418/618, Fall 2015

Occlusion using the depth-buffer (Z-buffer)

After processing red triangle:

O O O

Color buffer contents

O

O

O

O

O

O

Grayscale value of sample point

used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O

O

O

O

o

O

O

O

O

O

O

O

O

O

Depth buffer contents

O O
O O
O O
e O
o O
® @
® []
O O
O O

CMU 15-418/618, Fall 2015

Does depth-buffer algorithm handle
interpenetrating surfaces?

Of course!

Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

Green triangle in
front of yellow
triangle

Yellow triangle in
front of green
triangle ° [] .] []

CMU15-418/618, Fall 2015

Does depth-buffer algorithm handle
interpenetrating surfaces?

Of course!

Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

e * o * o ° ® o °
« °® ¢ * . e
e * o o ¢
. e e ©
e * e °
.]

CMU 15-418/618, Fall 2015

Z-Buffering : Summary

e Current standard algorithm that is implemented on all
graphics hardwares

e Advantages / Disadvantages:

— Easy to implement
— Fast with hardware support = Fast depth buffer memory

— Polygons can be drawn in any order
— Extra memory required for z-buffer

— not a problem anymore

Rendering (Graphics) Pipeline Again

[vertex L fragment
: |—| rasterization |—| : If
processing processing

. performs a : assembles . determines v

sequence of vertex polygons converts color of each _

transformations each polygon into a fragment with {Output merglng}
set of fragments light & texture

(pixels)

OpenGL/Direct3D graphics pipeline *
Structures rendering computation as a series of operations on vertices, primitives,
fragments, and screen samples

°3
ik °4 |nput: vertices in 3D space

' .
Operations on Jertexierocessing
vertices Vertex streaml o --------- L .))

P o | Verticesin positioned in normalized

Operations on Primitive Processing . : coordinate space
primitives | e

Primitive stream prmTmmmmememoeenneees :

(triangles, lines, etc.) : :
Fragment Generation Triangles positioned on screen
(Rasterization) §

Operations on Fragment stream H —
fragments . "B Fragments (one fragment per covered sample)
Fragmentierocessing = u =
Shaded fi tst o H
aded rragments reaml O ? Shaded fragments
Operations on Screen sample operations =

(depth and color) e :
screen samples : :

> Output: image (pixels)

* Several stages of the modern OpenGL pipeline are omitted CMU 15-462/662, Fall 2015

OpenGL/Direct3D graphics pipeline *
Structures rendering computation as a series of operations on vertices, primitives,
fragments, and screen samples

°3
ik °4 |nput: vertices in 3D space

' .
Operations on Jertexibrocessing'
vertices Vertex streaml o --------- .) .))

P o | Verticesin positioned in normalized

Operations on Primitive Processing . coordinate space
primitives | e

Primitive stream ey :

(triangles, lines, etc.) : :
CIipping & s Fragment Generation Triangles positioned on screen
Back-face cuIIing (Rasterization) : :

Operations on Fragment stream H —
fragments . "B Fragments (one fragment per covered sample)

Fragmentierocessing = = -

Shaded fi tst o
aded rragments reaml O ? Shaded fragments
Operations on Screen sample operations =
(depth and color) . :

screen samples] :

Depth test > Output: image (pixels)

* Several stages of the modern OpenGL pipeline are omitted CMU 15-462/662, Fall 2015

OpenGL/Direct3D graphics pipeline *

°1 o
°4 |nput verticesin 3D space

°2

Operations on /ErtexiErocessing |<— transform matrices

vertices Vertex streaml

Operations on Primitive Processing

primitives o e

(triangles, lines, etc,) Primitivestream textures , lighting model & condition
Clipping & = fragment Generation
Back-face culling (it

Operations on Fragment stream Pipe"ne inputS:

fragments

FragmentiProcessing]4_ — Input vertex data

— Parameters needed to compute position on vertices

Shaded fragment stream .) .)
in normalized coordinates (e.g., transform matrices)

Screen sample operations
(depth and color)

— Parameters needed to compute color of fragments
(e.g., textures)

Operations on
screen samples

Depth test

— “Shader” programs that define behavior of vertex
and fragment stages

* several stages of the modern OpenGL pipeline are omitted CMU 15-462/662, Fall 2015

OpenGL/Direct3D graphics pipeline *

o °4 |nput verticesin 3D space
v =
Operations on arad diudsly) €= transform matrices
vertices - streami

Primitive Processing

Operations on
primitives
(triangles, lines, etc.)

Primitive stream
B ——

Fragment Generation

Clipping &
Back-face culling
Operations on

(Rasterization)

Fragment stream
\ 4

textures

, lighting model & condition

fragments
| Fragmenticrocessing

‘ I
Shaded fragment stream¢

Screen sample operations
(depth and color)

Operations on
screen samples

Depth test

* several stages of the modern OpenGL pipeline are omitted

Grey steps are automatically done by
modern graphics system

Yellow steps (and their inputs) SHOULD
be performed & provided by human

That's why we've been focusing on
these yellow things in this course!

You can even write your own software
renderer that covers whole process!

(MU 15-462/662, Fall 2015

Acknowledgement

* Acknowledgement: Some materials come from the lecture slides of
— Prof. Sung-eui Yoon, KAIST, https://sglab.kaist.ac.kr/~sungeui/CG/
— Prof. JungHyun Han, Korea Univ., http://media.korea.ac.kr/book/

— Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cqi

— Prof. Steve Marschner, Cornell Univ., http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

— Prof. Kayvon Fatahalian and Prof. Keenan Crane, CMU, http://15462.courses.cs.cmu.edu/fall2015/

https://sglab.kaist.ac.kr/~sungeui/CG/
http://media.korea.ac.kr/book/
http://calab.hanyang.ac.kr/cgi-bin/cg.cgi
http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml
http://15462.courses.cs.cmu.edu/fall2015/

Course Wrap-up

Do you remember?

« Computer graphics: The study of creating,
manipulating, and using visual images in the

Computer.
— -
‘ ~— Animation
(a series of
Modelling Simulation & Rendering Images)

Computer vision inverts the process
Image processing deals with images

Questions about Computer Graphics

To do this, we should be able to answer:

How to express movement, placement, shape, and
appearance of objects

How to map 3D objects into 2D screen

How the whole rendering process Is performed

Movement & placement

3 - Transformation 1

4 - Transformation 2

5 - Rendering Pipeline, Viewing & Projection 1
8 - Hierarchical Modeling

9 - Orientation & Rotation

10 - Kinematics & Animation

11 - Curves

Mapping to 2D screen

5 - Rendering Pipeline, Viewing & Projection 1
6 - Viewing & Projection 2, Mesh

6 - Viewing & Projection 2, Mesh

Shape 11 - Curves
7 - Lighting & Shading
Appearance 12 - More Lighting, Texture

Rendering Pipeline

5 - Rendering Pipeline, Viewing & Projection 1
13 - Rasterization & Visibility

How do you feel?

 If you’ve had more fun in this course than other
courses, you already have the potential to do
Interesting research in computer graphics!

| think, passion Is the most important thing In
computer graphics.

— That was the starting point for me on this path.

R
b N

FPS 60.753662

eeeeeeeeee

If you think "'that's me!"" and "l want to
study more!"’,

- JHEE OfL{OjO[d 2tH T2 ME S S 2 0 4Lt

— — 1 =
(43H0| 2| B) ZYm2ME S | ATt

- NEH OUOOM= § S50t &2 == Y52 0 2T
— (453 13H7]) "COMPUTER SCIENCE Capstone PBL

(Character Motion Synthesis and Character Control)" &2 =X
+ Software Design Principles
Understanding Motion Data, Software Design for Motion Viewer
» Forward Kinematics, Inverse Kinematics
Motion Warping, Stitching, Blending
Particle Dynamics

Rigid Body Dynamics, Character Simulation & Control

- 4%H0| 17 HeE) 2t =D Hch
XotH| Ol Y= E LM &: yoonsanglee@hanyang.ac.kr

mailto:yoonsanglee@hanyang.ac.kr

Computer Graphics @12| &4

. DE 1 AN =0 2 30|34 Ol = S E|
2 Lt27] =0, O] 2LCt.

— Computer graphics = OF0| M= =& submit & [j
HIC|RF F 5= A0 7| &

Computer Graphics and Robotics Lab.

e https://cgrhyu.qgithub.io/

https://cgrhyu.github.io/

Thanks for
being a great
class!

