
Computer Graphics

13 - Rasterization & Visibility

Yoonsang Lee

Spring 2021

기말고사 모의테스트 1 분석 결과

• 다음과 같은 부정행위로 간주될 수 있는 사례들이 있었음.

• 시험 도중 손이나 머리가 카메라에 잘 보이지 않음 - 3명+

• 카메라 혹은 모니터 각도로 인해 화면이 잘 보이지 않음 - 6
명+

• 빛이나 모니터 밝기에 의해 화면이 잘 보이지 않음 - 9명+

• 녹화된 영상이 90도 회전해 있음 - 2명+

• 주변에 다른 디바이스 스크린이 존재 - 6명+

• 시험 종료 시간 전에 PC로 다른 작업을 함 - 5명+

• 카메라가 준비되지 않음 - 10명+

• 내일 있을 모의테스트 2에 모두 성실히 임해주기 바랍니다.
– 미응시하는 경우 실습 결석으로 체크할 예정

Topics Covered

• Two Approaches for Rendering

– Object-oriented (Rasterization)

– Image-oriented (Raytracing)

• Rasterization (in a narrow sense)

– Line / Polygon Drawing

• Visibility Problem

– Clipping (Viewing frustum culling)

– Back-face culling

– Hidden surface removal

• Rendering (Graphics) Pipeline Again

• Course Wrap-up

Recall: Rendering (Graphics) Pipeline

vertex

processing
rasterization

fragment

processing

output merging

: performs a

sequence of vertex

transformations

: assembles

polygons & converts

each polygon into a

set of fragments

(pixels)

: determines

color of each

fragment with

light & texture

Two Approaches for Rendering - 1

• This is called rendering (graphics) pipeline

• or rasterization (in a broad sense)

• or object-oriented rendering.

for each object in scene

transform the object to viewport

find pixels for the object

set color of the pixels based on texture and lighting

model

(triangle is rendered to screen)

vertex processing

rasterization (in a narrow sense)

fragment
processing

Two Approaches for Rendering - 2

• This is called ray tracing

• or image-oriented rendering.

• We’ll skip ray tracing part, see 13 - reference-

RayTracing.pdf for more information about it.

for each pixel in image(film plane)

determine which object should be shown at the pixel

set color of the pixel based on texture and lighting model

(ray intersection is rendered to screen)

Rasterization (in a broad sense) & Ray Tracing in

this Course

• Most topics we’ve covered are fundamental concepts
of computer graphics, regardless of these two rendering
approaches.

– Transformations, Hierarchical Modeling, Orientation &
Rotation, Kinematics & Animation

– Mesh, Lighting & Shading, Curves, Texture Mapping

• Except some topics:

– Rendering Pipeline, Viewing / Projection / Viewport
transformations

– Rasterization & Visibility (today’s topic)

• are specific to rasterization (in a broad sense).

Rasterization (in a narrow sense)

• Rasterization converts vertex representation to pixel
representation (fragments)

• First job: Compute which pixels belong to a primitive

– to enumerate the pixels covered by the primitive

• Second job: Interpolate values across the primitive

– e.g. colors computed at vertices

– e.g. normals at vertices

Rasterization (in a narrow sense)

• A primitive can be a point, line, or polygon

• Line drawing algorithms

– Digital differential analyzer (DDA)

– Bresenham's (a.k.a. Midpoint)

– Xiaolin Wu's

• Polygon drawing algorithms

– Scanline

– Boundary fill

– Flood fill

Rasterization (in a narrow sense)

• But, we'll just skip details of these algorithms.

• Actually, line drawing and polygon drawing are not so easy as one
might think.

– Computational efficiency, anti-aliasing, ...

• But most graphics APIs (including OpenGL) basically support these
operations.

– These algorithms were intensively studied in early days of computer graphics,
so quite mature now.

– Now basic algorithms are implemented in graphics hardware (GPU) and you
can use them by calling such graphics APIs.

• So nowadays you can think lines and polygons as “primitives” that are
basically rendered.

Visibility Problem

• What is VISIBLE?

Red: viewing frustum, Blue: objects

Visibility Problem

• The answer is:

The camera view

Visibility Problem

• What is NOT VISIBLE?

Visibility Problem

• What is NOT VISIBLE?

• Primitives outside of the

viewing frustum

Visibility Problem

• What is NOT VISIBLE?

• Primitives outside of the

viewing frustum

• Back-facing primitives

Visibility Problem

• What is NOT VISIBLE?

• Primitives outside of the

viewing frustum

• Back-facing primitives

• Primitives occluded by other

objects closer to the camera

Visibility Problem

• These invisible primitives
should be removed because…

• No need to spend time to process
invisible vertices and polygons.

• A close object must hide a farther
one.

• So, removing these primitives is
required for efficient and correct
rendering.

Visibility Problem

• Removing...

• Primitives outside of the viewing frustum

• → Clipping (Viewing frustum culling)

• Back-facing primitives

• → Back-face culling

• Primitives occluded by other objects closer to the camera

• → Hidden surface removal

Clipping (Viewing Frustum Culling)

• Removing primitives outside of

the viewing frustum

• Clipping is much easier with

canonical view volume.

– actually done in clip space

Clipping (Viewing Frustum Culling)

• Line clipping algorithms

– Cohen–Sutherland

– Liang–Barsky

– Cyrus–Beck

• Polygon clipping algorithms

– Sutherland–Hodgman

– Weiler–Atherton

Clipping (Viewing Frustum Culling)

• Polygon clipping algorithms are more complicated.

– Vertices may be added to or deleted from the triangle.

• Again, let’s just skip details of these algorithms.

• Most graphics APIs (including OpenGL) performs
clipping by default.

– You just set the view frustum, then OpenGL will do clipping for
you.

• 13 - reference-rasterization,clipping.pdf has brief slides
about DDA (line drawing) & Cohen-Sutherland algorithms
(line clipping). If you're interested, please refer it.

triangle → quad

Back-Face Culling

• Removing back-facing primitives

• Determined by the dot product of

normal and view (camera)

vectors.

Discard!

Back-Face Culling

• Back-face culling is much more efficient when

performed in canonical view volume.

– Because in canonical view volume, we can use a single

view vector, (0,0,1).

view
vector

Back-Face Culling

25

Back-Face Culling in OpenGL

if (cull):

glFrontFace(GL_CCW) # define winding order

glEnable(GL_CULL_FACE) # enable Culling

glCullFace(GL_BACK) # which faces to cull

else:

glDisable(GL_CULL_FACE)

● Can cull front faces or back faces

● Back-face culling can sometimes double
performance

(initially disabled)

(initial value: GL_CCW)

You can also do front-face culling!

Hidden Surface Removal

• Removing primitives occluded by

other objects closer to the camera

• Also known as

– Hidden Surface Elimination

– Hidden Surface Determination

– Visible Surface Determination

– Occlusion Culling

Hidden Surface Removal

• Many algorithms

– Z-buffer (Depth buffer)

– Painter’s algorithm

– BSP tree

– ...

• Z-buffer is the standard method.

• Let’s see the ideas of Painter’s algorithm & Z-

buffer.

Frame Buffer (background knowledge for

understanding HSR algorithms)

• Frame buffer is the portion of memory to hold the

bitmapped image that is sent to the (raster) display device.

• Typically stored on the graphic card’s memory.

– But integrated graphics (e.g. Intel HD Graphics) use the main

memory to store the frame buffer.

• A frame buffer is characterized by its
width, height, and depth.

– E.g. The frame buffer size for 4K UHD
resolution with 32bit color depth = 3840 x
2160 x 32 bits

2

9

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 10

Painter’s algorithm

• Simplest way to do hidden surfaces

• Draw from back to front, use overwriting in
framebuffer

• Requires sorting all polygons by their depth

Weakness of Painter’s Algorithm

• What if there are cycles in the sorted

graph?

– The only solution is dividing these

polygons into small pieces.

• Need to update the sorted graph

whenever camera or object location is

changed.

• → Time-consuming!

3

1

© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 10

The z buffer

• In many (most) applications maintaining a z sort is too
expensive

– changes all the time when the view changes

– many data structures exist, but complex

• Solution: draw in any order, keep track of closest

– Z-buffer keeps track of closest depth so far

– when drawing, compare object’s depth to current closest
depth and discard if greater

Z-Buffering: Algorithm
allocate depth_buffer; // Allocate depth buffer → Same size as viewport.

for each pixel (x,y) // For each pixel in viewport.

write_frame_buffer(x,y,backgrnd_color); // Initialize color.

write_depth_buffer(x,y,farPlane_depth); // Initialize depth (z) buffer.

for each polygon // Draw each polygon (in any order).

for each pixel (x,y) in polygon // Rasterize polygon.

color = polygon’s color at (x,y);

pz = polygon’s z-value at (x,y);// Interpolate z-value at (x, y).

if (pz < read_depth_buffer(x,y)) // If new depth is closer:

write_frame_buffer(x,y,color); // Write new (polygon) color.

write_depth_buffer(x,y,pz); // Write new depth.

Frame buffer Z-buffer (Depth buffer)

Z-Buffering : Summary

• Current standard algorithm that is implemented on all
graphics hardwares

• Advantages / Disadvantages:

– Easy to implement

– Fast with hardware support → Fast depth buffer memory

– Polygons can be drawn in any order

– Extra memory required for z-buffer

– not a problem anymore

Rendering (Graphics) Pipeline Again

vertex

processing
rasterization

fragment

processing

output merging

: performs a

sequence of vertex

transformations

: assembles

polygons converts

each polygon into a

set of fragments

(pixels)

: determines

color of each

fragment with

light & texture

Clipping &
Back-face culling

Depth test

, lighting model & condition

Clipping &
Back-face culling

Depth test

, lighting model & condition

• Grey steps are automatically done by
modern graphics system

• Yellow steps (and their inputs) SHOULD
be performed & provided by human

• That’s why we’ve been focusing on
these yellow things in this course!

• You can even write your own software
renderer that covers whole process!

Clipping &
Back-face culling

Depth test

Acknowledgement

• Acknowledgement: Some materials come from the lecture slides of

– Prof. Sung-eui Yoon, KAIST, https://sglab.kaist.ac.kr/~sungeui/CG/

– Prof. JungHyun Han, Korea Univ., http://media.korea.ac.kr/book/

– Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cgi

– Prof. Steve Marschner, Cornell Univ., http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml

– Prof. Kayvon Fatahalian and Prof. Keenan Crane, CMU, http://15462.courses.cs.cmu.edu/fall2015/

https://sglab.kaist.ac.kr/~sungeui/CG/
http://media.korea.ac.kr/book/
http://calab.hanyang.ac.kr/cgi-bin/cg.cgi
http://www.cs.cornell.edu/courses/cs4620/2014fa/index.shtml
http://15462.courses.cs.cmu.edu/fall2015/

Course Wrap-up

Do you remember?

• Computer graphics: The study of creating,

manipulating, and using visual images in the

computer.

Image

Animation
(a series of
images)

Questions about Computer Graphics

• To do this, we should be able to answer:

• How to express movement, placement, shape, and

appearance of objects

• How to map 3D objects into 2D screen

• How the whole rendering process is performed

Movement & placement

3 - Transformation 1

4 - Transformation 2

5 - Rendering Pipeline, Viewing & Projection 1

8 - Hierarchical Modeling

9 - Orientation & Rotation

10 - Kinematics & Animation

11 - Curves

Mapping to 2D screen
5 - Rendering Pipeline, Viewing & Projection 1

6 - Viewing & Projection 2, Mesh

Shape
6 - Viewing & Projection 2, Mesh

11 - Curves

Appearance
7 - Lighting & Shading

12 - More Lighting, Texture

Rendering Pipeline
5 - Rendering Pipeline, Viewing & Projection 1

13 - Rasterization & Visibility

How do you feel?

• If you’ve had more fun in this course than other

courses, you already have the potential to do

interesting research in computer graphics!

• I think, passion is the most important thing in

computer graphics.

– That was the starting point for me on this path.

If you think "that's me!" and "I want to

study more!",

• 캐릭터 애니메이션관련 프로젝트를해보고싶다:

– (4학년이되면) 졸업프로젝트를함께 해봅시다.

• 캐릭터 애니메이션을더 공부하고실컷 프로그래밍해보고싶다 :

– (4학년 1학기) "COMPUTER SCIENCE Capstone PBL
(Character Motion Synthesis and Character Control)" 수강을 추천

• Software Design Principles

• Understanding Motion Data, Software Design for Motion Viewer

• Forward Kinematics, Inverse Kinematics

• Motion Warping, Stitching, Blending

• Particle Dynamics

• Rigid Body Dynamics, Character Simulation & Control

• 4학년이되기 전부터 뭔가 해보고싶다!:

– 저한테이메일을 보내주세요: yoonsanglee@hanyang.ac.kr

mailto:yoonsanglee@hanyang.ac.kr

Computer Graphics 연구의 특성

• 구현을 많이 한다 (프로그래밍을 좋아하고, 자

신이 있으면 잘 할 가능성이 크다).

• 모든 연구 결과는 눈으로 확인할 수 있는 형태

로 나오기 때문에, 재미있다.

– Computer graphics 분야에서는 논문을 submit 할 때

비디오를 첨부하는 것이 기본

Computer Graphics and Robotics Lab.

• https://cgrhyu.github.io/

https://cgrhyu.github.io/

Thanks for

being a great

class!

