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Topics Covered

Two Approaches for Rendering
— Object-oriented (Rasterization)
— Image-oriented (Raytracing)

« Rasterization (in a narrow sense)
— Line / Polygon Drawing

 Visibility Problem
— Clipping (Viewing frustum culling)

— Back-face culling
— Hidden surface removal

» Rendering (Graphics) Pipeline Again

* Course Wrap-up



Recall: Rendering (Graphics) Pipeline

[ vertex L fragment
: |—| rasterization |—| : If
processing processing

. performs a : assembles . determines v

sequence of vertex polygons & converts color of each _

transformations each polygon into a fragment with {Output merglng}
set of fragments light & texture

(pixels)




Two Approaches for Rendering - 1

for each object in scene

transform the object to viewport # vertex processing

find pixels for the object # rasterization (in a narrow sense)

set color of the pixels based on texture and lighting
mode 1 # fragment

......- pfOC@SS/hg

(triangle is rendered to screen)

« This is called rendering (graphics) pipeline
* Or rasterization (in a broad sense)

 or object-oriented rendering.



Two Approaches for Rendering - 2

for each pixel in image(film plane)
determine which object should be shown at the pixel
set color of the pixel based on texture and lighting model
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(ray intersection is rendered to screen) Il
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film plane

* This is called ray tracing
* or image-oriented rendering.

« We’ll skip ray tracing part, see 13 - reference-
RayTracing.pdf for more information about it.



Rasterization (in a broad sense) & Ray Tracing In
this Course

* Most topics we’ve covered are fundamental concepts
of computer graphics, regardless of these two rendering
approaches.

— Transformations, Hierarchical Modeling, Orientation &
Rotation, Kinematics & Animation

— Mesh, Lighting & Shading, Curves, Texture Mapping

» EXcept some topics:

— Rendering Pipeline, Viewing / Projection / Viewport
transformations

— Rasterization & Visibility (today’s topic)
« are specific to rasterization (in a broad sense).



Rasterization (In a narrow sense)

« Rasterization converts vertex representation to pixel
representation (fragments)

 First job: Compute which pixels belong to a primitive
— to enumerate the pixels covered by the primitive

« Second job: Interpolate values across the primitive
— e.g. colors computed at vertices
— e.g. normals at vertices



Rasterization (In a narrow sense)
« Aprimitive can be a point, line, or polygon

 Line drawing algorithms
— Digital differential analyzer (DDA)
— Bresenham's (a.k.a. Midpoint)
— Xiaolin Wu's

 Polygon drawing algorithms
— Scanline
— Boundary fill
— Flood fill



Rasterization (In a narrow sense)

« But, we'll just skip details of these algorithms.

« Actually, line drawing and polygon drawing are not so easy as one
might think.

— Computational efficiency, anti-aliasing, ...

« But most graphics APIs (including OpenGL) basically support these
operations.

— These algorithms were intensively studied in early days of computer graphics,
SO quite mature now.

— Now basic algorithms are implemented in graphics hardware (GPU) and you
can use them by calling such graphics APIs.

* So nowadays you can think lines and polygons as “primitives” that are
basically rendered.



Visibility Problem

* What is VISIBLE?

Red: viewing frustum, Blue: objects




Visibility Problem

 The answer IS:

The camera view
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Visibility Problem

* What is NOT VISIBLE?




Visibility Problem

* What is NOT VISIBLE?

* Primitives outside of the
viewing frustum




Visibility Problem

* What is NOT VISIBLE?

* Primitives outside of the
viewing frustum

« Back-facing primitives



Visibility Problem

* What is NOT VISIBLE?

* Primitives outside of the
viewing frustum

« Back-facing primitives

* Primitives occluded by other
objects closer to the camera



Visibility Problem

* These invisible primitives
should be removed because...

* No need to spend time to process
Invisible vertices and polygons.

« A close object must hide a farther
one.

* S0, removing these primitives is
required for efficient and correct
rendering.



Visibility Problem

* Removing...

* Primitives outside of the viewing frustum
* — Clipping (Viewing frustum culling)

« Back-facing primitives
« — Back-face culling

* Primitives occluded by other objects closer to the camera

e — Hidden surface removal



Clipping (Viewing Frustum Culling)

* Removing primitives outside of
the viewing frustum

» Clipping is much easier with —\

canonical view volume. J l | ‘ 1l \
I

— actually done in clip space




Clipping (Viewing Frustum Culling)

 Line clipping algorithms
— Cohen—Sutherland
— Liang—Barsky

— Cyrus—Beck

 Polygon clipping algorithms
— Sutherland—Hodgman
— Weiler—Atherton



Clipping (Viewing Frustum Culling)

Polygon clipping algorithms are more complicated.
— \ertices may be added to or deleted from the triangle.

* Again, let’s just skip details of these algorithms.

triangle — quad

« Most graphics APIs (including OpenGL) performs
clipping by default.

— You just set the view frustum, then OpenGL will do clipping for
you.

« 13 - reference-rasterization,clipping.pdf has brief slides
about DDA (line drawing) & Cohen-Sutherland algorithms
(line clipping). If you're interested, please refer it.



Back-Face Culling

* Removing back-facing primitives

« Determined by the dot product of
normal and view (camera)
vectors.
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Back-Face Culling

» Back-face culling iIs much more efficient when
performed in canonical view volume.

— Because In canonical view volume, we can use a single
view vector, (0,0,1).

view
vector
(0,0,1)

CAMETa space

(in RHS)



Back-Face Culling
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Back-Face Culling in OpenGL

e Can cull front faces or back faces
e Back-face culling can sometimes double

performance
if (cull): (initial value: GL_CCW)
glFrontFace (GL_CCW) # define winding order
glEnable (GL_ CULL FACE) # enable Culling(initially disabled)
glCullFace (GL_BACK) # which faces to cull
else:

glDisable (GL_CULL FACE)

You can also do front-face culling!
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Hidden Surface Removal

* Removing primitives occluded by
other objects closer to the camera

* Also known as

— Hidden Surface Elimination

— Hidden Surface Determination
— Visible Surface Determination
— Occlusion Culling



Hidden Surface Removal

« Many algorithms
— Z-buffer (Depth buffer)

— Painter’s algorithm
— BSP tree

o Z-buffer iIs the standard method.

* Let’s see the 1deas of Painter’s algorithm & Z-

buffer.



Frame Buffer (background knowledge for
understanding HSR algorithms)

* Frame buffer is the portion of memory to hold the
bitmapped image that Is sent to the (raster) display device.

« A frame buffer is characterized by its

width, height, and depth.

— E.g. The frame buffer size for 4K UHD

resolution with 32bit color depth = 3840 x

2160 x 32 bits

* Typically stored on the graphic card’s memory.

— But integrated graphics (e.g. Intel HD Graphics) use the main
memory to store the frame buffer.



Painter’s algorithm

e Simplest way to do hidden surfaces

e Draw from back to front, use overwriting in
framebuffer

e Requires sorting all polygons by their depth

Cornell CS4620 Fall 2008 ® Lecture 10 © 2008 Steve Marschner ¢ 2
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Weakness of Painter’s Algorithm

* What if there are cycles in the sorted
graph?
— The only solution is dividing these
polygons into small pieces.

* Need to update the sorted graph
whenever camera or object location is
changed. '

* — Time-consuming!




The z buffer

* In many (most) applications maintaining a z sort is too
expensive
— changes all the time when the view changes
— many data structures exist, but complex

e Solution: draw in any order, keep track of closest

— Z-buffer keeps track of closest depth so far

— when drawing, compare object’s depth to current closest
depth and discard if greater

Cornell CS4620 Fall 2008 o Lecture 10 © 2008 Steve Marschner ¢ 3
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Z-Buffering: Algorithm
allocate depth buffer; // Allocate depth buffer - Same size as viewport.

for each pixel (x,y) // For each pixel in viewport.
write frame buffer (x,y,backgrnd color); //Initialize color.
write depth buffer (x,y,farPlane depth); //Initialize depth (z) buffer.

for each polygon // Draw each polygon (in any order).
for each pixel (x,y) in polygon //Rasterize polygon.
color = polygon’s color at (x,y):;
p, = polygon’s z-value at (x,y) ;//Interpolate z-value at (x, y).

if (p, < read depth buffer(x,y)) // If new depth is closer:
write frame buffer (x,y,color); // Write new (polygon) color.
write depth buffer(x,y,p,); // Write new depth.

Frame buffer Z-buffer (Depth buffer)



Example: rendering three opaque triangles
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Occlusion using the depth-buffer (Z-buffer)

Processing yellow triangle:
depth=0.5

O O O O O O O

o @] O O O O O

Color buffer contents

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test
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Depth buffer contents

(MU 15-418/618, Fall 2015



Occlusion using the depth-buffer (Z-buffer)

After processing yellow triangle:

O O O

O O O

Color buffer contents

O

o

Grayscale value of sample point

used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test
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Occlusion using the depth-buffer (Z-buffer)

Processing blue triangle:

depth=0.75

O @] O O
O O O O
o O O O
O O O

O o

O O O O
O O O O

Color buffer contents

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test
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Depth buffer contents

(MU 15-418/618, Fall 2015



Occlusion using the depth-buffer (Z-buffer)

After processing blue triangle:

O O

O O

O

O O O O O O

O @) O O @) o O @)

Color buffer contents

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test
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Depth buffer contents

(MU 15-418/618, Fall 2015



Occlusion using the depth-buffer (Z-buffer)

Processing red triangle:
depth =0.25

O ® [ O O O

O O O O @] O

Color buffer contents

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test
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Depth buffer contents
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Occlusion using the depth-buffer (Z-buffer)

After processing red triangle:

O O O

Color buffer contents

O

O

O

O

O

O

Grayscale value of sample point

used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test
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Does depth-buffer algorithm handle
interpenetrating surfaces?

Of course!

Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

Green triangle in
front of yellow
triangle

Yellow triangle in
front of green
triangle ° [] . ] [ ]

CMU15-418/618, Fall 2015



Does depth-buffer algorithm handle
interpenetrating surfaces?

Of course!

Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.
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CMU 15-418/618, Fall 2015



Z-Buffering : Summary

e Current standard algorithm that is implemented on all
graphics hardwares

e Advantages / Disadvantages:

— Easy to implement
— Fast with hardware support = Fast depth buffer memory

— Polygons can be drawn in any order
— Extra memory required for z-buffer

— not a problem anymore



Rendering (Graphics) Pipeline Again

[ vertex L fragment
: |—| rasterization |—| : If
processing processing

. performs a : assembles . determines v

sequence of vertex polygons converts color of each _

transformations each polygon into a fragment with {Output merglng}
set of fragments light & texture

(pixels)




OpenGL/Direct3D graphics pipeline *
Structures rendering computation as a series of operations on vertices, primitives,
fragments, and screen samples

°3
ik °4 |nput: vertices in 3D space

' .
Operations on Jertexierocessing
vertices Vertex streaml o --------- L . ) )

P o | Verticesin positioned in normalized

Operations on Primitive Processing . : coordinate space
primitives | e

Primitive stream prmTmmmmememoeenneees :

(triangles, lines, etc.) : :
Fragment Generation Triangles positioned on screen
(Rasterization) §

Operations on Fragment stream H —
fragments . "B Fragments (one fragment per covered sample)
Fragmentierocessing = u =
Shaded fi tst o H
aded rragments reaml O ? Shaded fragments
Operations on Screen sample operations =

(depth and color) e :
screen samples : :

> Output: image (pixels)

* Several stages of the modern OpenGL pipeline are omitted CMU 15-462/662, Fall 2015



OpenGL/Direct3D graphics pipeline *
Structures rendering computation as a series of operations on vertices, primitives,
fragments, and screen samples

°3
ik °4 |nput: vertices in 3D space

' .
Operations on Jertexibrocessing'
vertices Vertex streaml o --------- . ) . ) )

P o | Verticesin positioned in normalized

Operations on Primitive Processing . coordinate space
primitives | e

Primitive stream ey :

(triangles, lines, etc.) : :
CIipping & s Fragment Generation Triangles positioned on screen
Back-face cuIIing (Rasterization) : :

Operations on Fragment stream H —
fragments . "B Fragments (one fragment per covered sample)

Fragmentierocessing = = -

Shaded fi tst o
aded rragments reaml O ? Shaded fragments
Operations on Screen sample operations =
(depth and color) . :

screen samples ] :

Depth test > Output: image (pixels)

* Several stages of the modern OpenGL pipeline are omitted CMU 15-462/662, Fall 2015



OpenGL/Direct3D graphics pipeline *

°1 o
°4 |nput verticesin 3D space

°2

Operations on /ErtexiErocessing |<— transform matrices

vertices Vertex streaml

Operations on Primitive Processing

primitives o e

(triangles, lines, etc,) Primitivestream textures , lighting model & condition
Clipping & =  fragment Generation
Back-face culling (it

Operations on Fragment stream Pipe"ne inputS:

fragments

FragmentiProcessing ]4_ — Input vertex data

— Parameters needed to compute position on vertices

Shaded fragment stream . ) . )
in normalized coordinates (e.g., transform matrices)

Screen sample operations
(depth and color)

— Parameters needed to compute color of fragments
(e.g., textures)

Operations on
screen samples

Depth test

— “Shader” programs that define behavior of vertex
and fragment stages

* several stages of the modern OpenGL pipeline are omitted CMU 15-462/662, Fall 2015



OpenGL/Direct3D graphics pipeline *

o °4  |nput verticesin 3D space
v =
Operations on arad diudsly) €= transform matrices
vertices - streami

Primitive Processing

Operations on
primitives
(triangles, lines, etc.)

Primitive stream
B ——

Fragment Generation

Clipping &
Back-face culling
Operations on

(Rasterization)

Fragment stream
\ 4

textures

, lighting model & condition

fragments
| Fragmenticrocessing

‘ I
Shaded fragment stream¢

Screen sample operations
(depth and color)

Operations on
screen samples

Depth test

* several stages of the modern OpenGL pipeline are omitted

Grey steps are automatically done by
modern graphics system

Yellow steps (and their inputs) SHOULD
be performed & provided by human

That's why we've been focusing on
these yellow things in this course!

You can even write your own software
renderer that covers whole process!

(MU 15-462/662, Fall 2015
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Course Wrap-up



Do you remember?

« Computer graphics: The study of creating,
manipulating, and using visual images in the

Computer.
— -
‘ ~— Animation
(a series of
Modelling Simulation & Rendering Images)

Computer vision inverts the process
Image processing deals with images



Questions about Computer Graphics

To do this, we should be able to answer:

How to express movement, placement, shape, and
appearance of objects

How to map 3D objects into 2D screen

How the whole rendering process Is performed



Movement & placement

3 - Transformation 1

4 - Transformation 2

5 - Rendering Pipeline, Viewing & Projection 1
8 - Hierarchical Modeling

9 - Orientation & Rotation

10 - Kinematics & Animation

11 - Curves

Mapping to 2D screen

5 - Rendering Pipeline, Viewing & Projection 1
6 - Viewing & Projection 2, Mesh

6 - Viewing & Projection 2, Mesh

Shape 11 - Curves
7 - Lighting & Shading
Appearance 12 - More Lighting, Texture

Rendering Pipeline

5 - Rendering Pipeline, Viewing & Projection 1
13 - Rasterization & Visibility




How do you feel?

 If you’ve had more fun in this course than other
courses, you already have the potential to do
Interesting research in computer graphics!

| think, passion Is the most important thing In
computer graphics.

— That was the starting point for me on this path.
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If you think "'that's me!"" and "l want to
study more!"’,
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Computer Graphics and Robotics Lab.

e https://cgrhyu.qgithub.io/



https://cgrhyu.github.io/

Thanks for
being a great
class!




