
Computer Graphics

4 - Transformation 2

Yoonsang Lee

Spring 2021

Topics Covered

• 3D Affine Transformation

• OpenGL Transformation Functions

– OpenGL “Current” Transformation Matrix

– OpenGL Transformation Functions

– Composing Transformations using OpenGL Functions

• Fundamental Idea of Transformation

• Affine Space & Coordinate-Free Concepts

3D Affine Transformation

Point Representation in Cartesian &

Homogeneous Coordinate System

Cartesian coordinate

system

Homogeneous

coordinate system

A 2D point is

represented as…

A 3D point is

represented as…

Review of Linear Transform in 2D

• Linear transformation in 2D can be represented as

matrix multiplication of …

2x2 matrix

(in Cartesian coordinates)

3x3 matrix

(in homogeneous coordinates)

or

Linear Transformation in 3D

• Linear transformation in 3D can be represented as

matrix multiplication of …

3x3 matrix

(in Cartesian coordinates)

4x4 matrix

(in homogeneous coordinates)

or

Linear Transformation in 3D

Linear Transformation in 3D

• Translation in 2D can be represented as …

Review of Translation in 2D

Vector addition

(in Cartesian coordinates)

Matrix multiplication of

3x3 matrix

(in homogeneous coordinates)

Translation in 3D

• Translation in 3D can be represented as …

Vector addition

(in Cartesian coordinates)

Matrix multiplication of

4x4 matrix

(in homogeneous coordinates)

Review of Affine Transformation in 2D

• In homogeneous coordinates, 2D affine

transformation can be represented as multiplication

of 3x3 matrix:

linear part translational part

• In homogeneous coordinates, 3D affine

transformation can be represented as multiplication

of 4x4 matrix:

Affine Transformation in 3D

linear part translational part

[Practice] 3D Transformations

import glfw

from OpenGL.GL import *

from OpenGL.GLU import *

import numpy as np

def render(M):

enable depth test (we'll see details

later)

glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glLoadIdentity()

use orthogonal projection (we'll see

details later)

glOrtho(-1,1, -1,1, -1,1)

rotate "camera" position to see this

3D space better (we'll see details later)

t = glfw.get_time()

gluLookAt(.1*np.sin(t),.1,

.1*np.cos(t), 0,0,0, 0,1,0)

draw coordinate system: x in red,

y in green, z in blue

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([1.,0.,0.]))

glColor3ub(0, 255, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([0.,1.,0.]))

glColor3ub(0, 0, 255)

glVertex3fv(np.array([0.,0.,0]))

glVertex3fv(np.array([0.,0.,1.]))

glEnd()

draw triangle - p'=Mp

glBegin(GL_TRIANGLES)

glColor3ub(255, 255, 255)

glVertex3fv((M @

np.array([.0,.5,0.,1.]))[:-1])

glVertex3fv((M @

np.array([.0,.0,0.,1.]))[:-1])

glVertex3fv((M @

np.array([.5,.0,0.,1.]))[:-1])

glEnd()

def main():

if not glfw.init():

return

window = glfw.create_window(640,640,

"3D Trans", None,None)

if not window:

glfw.terminate()

return

glfw.make_context_current(window)

glfw.swap_interval(1)

while not

glfw.window_should_close(window):

glfw.poll_events()

rotate -60 deg about x axis

th = np.radians(-60)

R = np.array([[1.,0.,0.,0.],

[0., np.cos(th), -np.sin(th),0.],

[0., np.sin(th), np.cos(th),0.],

[0.,0.,0.,1.]])

translate by (.4, 0., .2)

T = np.array([[1.,0.,0.,.4],

[0.,1.,0.,0.],

[0.,0.,1.,.2],

[0.,0.,0.,1.]])

render(R) # p'=Rp

render(T) # p'=Tp

render(T @ R) # p'=TRp

render(R @ T) # p'=RTp

glfw.swap_buffers(window)

glfw.terminate()

if __name__ == "__main__":

main()

...

rotate 60 deg about x axis

th = np.radians(-60)

R = np.identity(4)

R[:3,:3] = [[1.,0.,0.],

[0., np.cos(th), -np.sin(th)],

[0., np.sin(th), np.cos(th)]]

translate by (.4, 0., .2)

T = np.identity(4)

T[:3,3] = [.4, 0., .2]

...

[Practice] Tips: Use Slicing

• You can use slicing for cleaner code (the behavior

is the same as the previous page)

Quiz #1

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

OpenGL Transformation

Functions

OpenGL “Current” Transformation Matrix

• OpenGL is a “state machine”.

– If you set a value for a state, it remains in effect until

you change it.

– ex1) current color

– ex2) current transformation matrix

• An OpenGL context keeps the “current”

transformation matrix somewhere in the memory.

OpenGL “Current” Transformation Matrix

• OpenGL always draws an object with the current

transformation matrix.

• Let’s say p is a vertex position of an object,

• and C is the current transformation matrix,

• If you set the vertex position using glVertex3fv(p),

• OpenGL will draw the vertex at the position of Cp

OpenGL “Current” Transformation Matrix

• Except today’s practice code (which use glOrtho() and
gluLookAt()), the current transformation matrix we’ve used
so far is the identity matrix.

• This is done by glLoadIdentity() - replace the current
matrix with the identity matrix.

1

-1

-1 1

x

y
• If the current transformation

matrix is the identity, all
objects are drawn in the
Normalized Device Coordinate
(NDC) space.

OpenGL Transformation Functions

• OpenGL provides a number of functions to manipulate the current
transformation matrix.

• At the beginning of each rendering iteration, you have to set the current matrix
to the identity matrix with glLoadIdentity().

• Then you can manipulate the current matrix with following functions:

• Scale, rotate, translate with parameters

– glScale*()

– glRotate*()

– glTranslate*()

– OpenGL doesn’t provide functions like glShear*() and glReflect*()

• Direct manipulation of the current matrix

– glMultMatrix*()

[Practice] OpenGL

Trans. Functions

import glfw

from OpenGL.GL import *

from OpenGL.GLU import *

import numpy as np

gCamAng = 0.

def render(camAng):

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

set the current matrix to the identity matrix

glLoadIdentity()

use orthogonal projection (multiply the current

matrix by "projection" matrix - we'll see details

later)

glOrtho(-1,1, -1,1, -1,1)

rotate "camera" position (multiply the current

matrix by "camera" matrix - we'll see details later)

gluLookAt(.1*np.sin(camAng),.1,.1*np.cos(camAng),

0,0,0, 0,1,0)

draw coordinates

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([1.,0.,0.]))

glColor3ub(0, 255, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([0.,1.,0.]))

glColor3ub(0, 0, 255)

glVertex3fv(np.array([0.,0.,0]))

glVertex3fv(np.array([0.,0.,1.]))

glEnd()

##############################

edit here

def key_callback(window, key, scancode, action,

mods):

global gCamAng

rotate the camera when 1 or 3 key is pressed

or repeated

if action==glfw.PRESS or action==glfw.REPEAT:

if key==glfw.KEY_1:

gCamAng += np.radians(-10)

elif key==glfw.KEY_3:

gCamAng += np.radians(10)

def main():

if not glfw.init():

return

window = glfw.create_window(640,640, 'OpenGL

Trans. Functions', None,None)

if not window:

glfw.terminate()

return

glfw.make_context_current(window)

glfw.set_key_callback(window, key_callback)

while not glfw.window_should_close(window):

glfw.poll_events()

render(gCamAng)

glfw.swap_buffers(window)

glfw.terminate()

if __name__ == "__main__":

main()

[Practice] OpenGL Trans. Functions

def drawTriangleTransformedBy(M):

p1=(0,.5,0), p2=(0,0,0), p3=(.5,0,0)

glBegin(GL_TRIANGLES)

glVertex3fv((M @ np.array([.0,.5,0.,1.]))[:-1])

glVertex3fv((M @ np.array([.0,.0,0.,1.]))[:-1])

glVertex3fv((M @ np.array([.5,.0,0.,1.]))[:-1])

glEnd()

def drawTriangle():

p1=(0,.5,0), p2=(0,0,0), p3=(.5,0,0)

glBegin(GL_TRIANGLES)

glVertex3fv(np.array([.0,.5,0.]))

glVertex3fv(np.array([.0,.0,0.]))

glVertex3fv(np.array([.5,.0,0.]))

glEnd()

glScale*()

• glScale*(x, y, z) - multiply the current matrix by a

scaling matrix

– x, y, z : scale factors along the x, y, and z axes

• Let’s call the current matrix C

• Calling glScale*(x, y, z) will update the current

matrix as follows:

• C ← CS (right-multiplication by S)
S=

[Practice] glScale*()

def render():

...

edit here

glColor3ub(255, 255, 255)

1)& 2) all draw a triangle with the same transformation

(scale by [2., .5, 0.]) - p'= CSp

(C: current transformation matrix at this point)

1)

glScalef(2., .5, 0.)

drawTriangle()

2)

S = np.identity(4)

S[0,0] = 2.

S[1,1] = .5

S[2,2] = 0.

drawTriangleTransformedBy(S)

glRotate*()

• glRotate*(angle, x, y, z) - multiply the current

matrix by a rotation matrix

– angle : angle of rotation, in degrees

– x, y, z : x, y, z coord. value of rotation axis vector

• Calling glRotate*(angle, x, y, z) will update the

current matrix as follows:

• C ← CR (right-multiplication by R)

R is a rotation matrix

[Practice] glRotate*()

def render():

...

edit here

glColor3ub(255, 255, 255)

1)& 2) all draw a triangle with the same transformation

(rotate 60 deg about x axis) - p'= CRp

(C: current transformation matrix at this point)

1)

glRotatef(60, 1, 0, 0)

drawTriangle()

2)

th = np.radians(60)

R = np.identity(4)

R[:3,:3] = [[1.,0.,0.],

[0., np.cos(th), -np.sin(th)],

[0., np.sin(th), np.cos(th)]]

drawTriangleTransformedBy(R)

glTranslate*()

• glTranslate*(x, y, z) - multiply the current matrix

by a translation matrix

– x, y, z : x, y, z coord. value of a translation vector

• Calling glTranslate*(x, y, z) will update the current

matrix as follows:

• C ← CT (right-multiplication by T)

T=

def render():

...

edit here

glColor3ub(255, 255, 255)

1)& 2) all draw a triangle with the same transformation

(translate by [.4, 0, .2]) - p'= CTp

(C: current transformation matrix at this point)

1)

glTranslatef(.4, 0, .2)

drawTriangle()

2)

T = np.identity(4)

T[:3,3] = [.4, 0., .2]

drawTriangleTransformedBy(T)

[Practice] glTranslate*()

glMultMatrix*()

• glMultiMatrix*(m) - multiply the current
transformation matrix with the matrix m

– m : 4x4 column-major matrix

– Note that a np.ndarray object stores data in row-major order

– You have to pass the transpose of np.ndarray to
glMultMatrix()

Row-majorColumn-major

m[0] m[1] m[2] m[3] m[4] m[5] m[6] m[7] m[8] m[9] m[10] m[11] m[12] m[13] m[14] m[15]

If this is the memory layout of a stored 4x4 matrix:

glMultMatrix*()

• Calling glMultMatrix*(M) will update the current

matrix as follows:

• C ← CM (right-multiplication by M)

[Practice]

glMultMatrix*()

def render():

...

edit here

rotate 30 deg about x axis

th = np.radians(30)

R = np.identity(4)

R[:3,:3] = [[1.,0.,0.],

[0., np.cos(th), -np.sin(th)],

[0., np.sin(th), np.cos(th)]]

translate by (.4, 0., .2)

T = np.identity(4)

T[:3,3] = [.4, 0., .2]

glColor3ub(255, 255, 255)

1)& 2)& 3) all draw a triangle with the same

transformation - p`=CRTp

(C: current transformation matrix at this

moment)

1)

glMultMatrixf(R.T)

glMultMatrixf(T.T)

drawTriangle()

2)

glMultMatrixf((R@T).T)

drawTriangle()

3)

drawTriangleTransformedBy(R@T)

Composing Transformations using OpenGL

Functions

• Let’s say the current matrix is the identity I

• will update the

current matrix to TR

• A vertex p of the triangle will be drawn at TRp

(p'=TRp)

• → p is first rotated by R, then translated by T.

glTranslatef(x, y, z) # T

glRotatef(angle, x, y, z) # R

drawTriangle() # p

Quiz #2

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

p1

p2

p3

.

.

.

pN

Affine transformation

Fundamental Idea of Transformation

p1' ←

p2' ←

p3' ←
.

.

.

pN' ←

M

M

M

.

.

.

M

M=

p' p

Fundamental idea Implementation 1: Using

numpy matrix multiplication

Implementation 2: Using

OpenGL transformation

functions

glVertex3fv(Mp1)

glVertex3fv(Mp2)

glVertex3fv(Mp3)

.

.

glVertex3fv(MpN)

(slicing is omitted)

glMultMatrixf(M) (M.T for numpy array)

glVertex3fv(p1)

glVertex3fv(p2)

glVertex3fv(p3)

.

.

glVertex3fv(pN)

(or you can use

glScalef(x,y,z),

glRotatef(ang,x,y,z),

glTranslatef(x,y,z))

• Performance drawback:

CPU performs all matrix

multiplications

• Faster than the left method

because GPU performs

matrix multiplications

• (Actually, calling a large number of glVertex3f() is not

applicable to serious OpenGL programs. Instead they use

vertex array.)

p1

p2

p3

.

.

.

pN

p1' ←

p2' ←

p3' ←
.

.

.

pN' ←

M

M

M

.

.

.

M

An array that stores all

vertex data.

This enables very fast

drawing.

(We'll cover it later)

Fundamental idea Implementation 1: Using

numpy matrix multiplication

Implementation 2: Using

OpenGL transformation

functions

glVertex3fv(Mp1)

glVertex3fv(Mp2)

glVertex3fv(Mp3)

.

.

glVertex3fv(MpN)

(slicing is omitted)

glMultMatrixf(M) (M.T for numpy array)

glVertex3fv(p1)

glVertex3fv(p2)

glVertex3fv(p3)

.

.

glVertex3fv(pN)

(or you can use

glScalef(x,y,z),

glRotatef(ang,x,y,z),

glTranslatef(x,y,z))

• Performance drawback:

CPU performs all matrix

multiplications

• Faster than the left method

because GPU performs

matrix multiplications

p1

p2

p3

.

.

.

pN

p1' ←

p2' ←

p3' ←
.

.

.

pN' ←

M

M

M

.

.

.

M

An array that stores all

vertex data.

This enables very fast

drawing.

(We'll cover it later)
• (Actually, calling a large number of glVertex3f() is not

applicable to serious OpenGL programs. Instead they use

vertex array.)

p1

p2

p3

.

.

.

pN

p1' ←

p2' ←

p3' ←
.

.

.

pN' ←

M1

M1

M1

.

.

.

M1

M1M2

Fundamental Idea of Transformation

M2

M2

M2

.

.

.

M2

Fundamental idea Implementation 1: Using

numpy matrix multiplication

Implementation 2: Using

OpenGL transformation

functions

glVertex3fv(M2M1p1)

glVertex3fv(M2M1p2)

glVertex3fv(M2M1p3)

.

.

glVertex3fv(M2M1pN)

(slicing is omitted)

glMultMatrixf(M2)

glMultMatrixf(M1)

…or…

glMultMatrixf(M2M1)

glVertex3fv(p1)

glVertex3fv(p2)

glVertex3fv(p3)

.

.

glVertex3fv(pN)

(or you can use combination

of glScalef(x,y,z),

glRotatef(ang,x,y,z),

glTranslatef(x,y,z))

p1

p2

p3

.

.

.

pN

p1' ←

p2' ←

p3' ←
.

.

.

pN' ←

M1

M1

M1

.

.

.

M1

M2

M2

M2

.

.

.

M2

Fundamental Idea is Most Important!

• If you see the term

“transformation”,

what you have to

think of is:

• Not this one: glScalef(x, y, x)

glRotatef(angle, x, y, z)

glTranslatef(x, y, z)

p1

p2

p3

.

.

.

pN

p1' ←

p2' ←

p3' ←
.

.

.

pN' ←

M

M

M

.

.

.

M

p1

p2

p3

.

.

.

pN

p1' ←

p2' ←

p3' ←
.

.

.

pN' ←

M1

M1

M1

.

.

.

M1

M2

M2

M2

.

.

.

M2

Fundamental Idea is Most Important!

• glScalef(), glRotatef(), glTranslatef() are only in
legacy OpenGL, not in DirectX, Unity, Unreal, modern OpenGL, …

• For example, in modern OpenGL, one have to directly multiply a
transformation matrix to a vertex position in vertex shader.

– Very similar to our first method – using numpy matrix multiplication

• That’s why I started the transformation lectures with numpy matrix
multiplication, not OpenGL transform functions.

– The fundamental idea is the most important!

• But in this class, you have to know how to use these gl transformation
functions anyway.

– They provide much faster computation.

Affine Space & Coordinate-

Free Concepts

Coordinate-invariant (Coordinate-free)

• Traditionally, computer graphics packages are

implemented using homogeneous coordinates.

• We will see affine space and coordinate-invariant

geometric programming concepts and their

relationship with the homogeneous coordinates.

• Because of historical reasons, it has been called

“coordinate-free” geometric programming.

• What is the “sum” of these two "points" ?

Point p

Point q

Points

If you assume coordinates, …

• The sum is (x1+x2, y1+y2)

– Is it correct ?

– Is it geometrically meaningful ?

p = (x1, y1)

q = (x2, y2)

If you assume coordinates, …

p = (x1, y1)

q = (x2, y2)

Origin

(x1+x2, y1+y2)

• Vector sum
– (x1, y1) and (x2, y2) are considered as vectors from the origin to p

and q, respectively.

If you select a different origin, …

p = (x1, y1)

q = (x2, y2)

Origin

(x1+x2, y1+y2)

• If you choose a different coordinate frame, you will get a

different result

Points and Vectors

• A point is a position specified with coordinate values.

• A vector is specified as the difference between two points.

• If an origin is specified, then a point can be represented by a vector

from the origin.

• But, a point is still not a vector in coordinate-free concepts.

Point p

Point q
vector (p-q)

Points & Vectors are Different!

• Mathematically (and physically),

• Points are locations in space.

• Vectors are displacements in space.

• An analogy with time:

• Times (or datetimes) are locations in time.

• Durations are displacements in time.

Vector and Affine Spaces

• Vector space

– Includes vectors and related operations

– No points

• Affine space

– Superset of vector space

– Includes vectors, points, and related operations

Vector spaces

• A vector space consists of

– Set of vectors, together with

– Two operations: addition of vectors and multiplication

of vectors by scalar numbers

• A linear combination of vectors is also a vector

VcccV NNN +++ uuuuuu  110010 ,,,

Affine Spaces

• An affine space consists of

– Set of points, an associated vector space, and

– Two operations: the difference between two points

and the addition of a vector to a point

Coordinate-Free Geometric Operations

• Addition

• Subtraction

• Scalar multiplication

Addition

u

vu + v

p

p + w

u + v is a vector p + w is a point

w

u, v, w : vectors

p, q : points

Subtraction

v

u - vu

q

p

u - v is a vector p - q is a vector

p - q

p

p - w

p - w is a point

-w

u, v, w : vectors

p, q : points

Scalar Multiplication

scalar • vector = vector

1 • point = point

0 • point = vector

c • point = (undefined) if (c≠0,1)

Affine Frame

• A frame is defined as a set of vectors {vi | i=1, …, N}

and a point o

– Set of vectors {vi} are bases of the associate vector

space

– o is an origin of the frame

– N is the dimension of the affine space

– Any point p can be written as

– Any vector v can be written as

NNccc vvvop ++++= 2211

NNccc vvvv +++= 2211

in 3D space

Summary

• In an affine space,

Points & Vectors in Homogeneous Coordinates

• In 3D spaces,

• A point is represented: (x, y, z, 1)

• A vector can be represented: (x, y, z, 0)

(x1, y1, z1, 1) + (x2, y2, z2, 1) = (x1+x2, y1+y2, z1+z2, 2)

point point undefined

(x1, y1, z1, 1) - (x2, y2, z2, 1) = (x1-x2, y1-y2, z1-z2, 0)

point point vector

(x1, y1, z1, 1) + (x2, y2, z2, 0) = (x1+x2, y1+y2, z1+z2, 1)

point vector point

60

Points & Vectors in Homogeneous Coordinates

• Multiplying affine transformation matrix to a point

and a vector:

• Note that translation is not applied to a vector!

point point vector vector

Quiz #3

• Go to https://www.slido.com/

• Join #cg-hyu

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Next Time

• Lab in this week:

– Lab assignment 4

• Next lecture:

– 5 - Affine Matrix, Rendering Pipeline

• Acknowledgement: Some materials come from the lecture slides of

– Prof. Kayvon Fatahalian and Prof. Keenan Crane, CMU, http://15462.courses.cs.cmu.edu/fall2015/

– Prof. Jehee Lee, SNU, http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.html

– Prof. Sung-eui Yoon, KAIST, https://sglab.kaist.ac.kr/~sungeui/CG/

http://15462.courses.cs.cmu.edu/fall2015/
http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.html
https://sglab.kaist.ac.kr/~sungeui/CG/

