Computer Graphics

4 - Transformation 2

Yoonsang Lee
Spring 2021

Topics Covered

3D Affine Transformation

OpenGL Transformation Functions

— OpenGL “Current” Transformation Matrix

— OpenGL Transformation Functions

— Composing Transformations using OpenGL Functions

Fundamental Idea of Transformation

Affine Space & Coordinate-Free Concepts

3D Affine Transformation

Point Representation iIn Cartesian &
Homogeneous Coordinate System

Cartesian coordinate Homogeneous
system coordinate system
A 2D point is T
represented as. .. _p il Pz
X
Py
Py 1
A 3D point is = =
represented as. .. i Pz
Pz
Py
Py
Pz
Pz _ 1

Review of Linear Transform in 2D

 Linear transformation in 2D can be represented as
matrix multiplication of ...

2X2 matrix or 3x3 matrix
(in Cartesian coordinates) (in homogeneous coordinates)
miyp Miz||Px mi; miz2 Of|p,
Mao1 Mao|| Py ma1 Moz U,
0 0 1|1

Linear Transformation in 3D

 Linear transformation in 3D can be represented as
matrix multiplication of ...

3x3 matrix
(in Cartesian coordinates)

IU T
Py

P-

or

4x4 matrix

(in homogeneous coordinates)

13 O-

o3 0

33 0
0 1

1{) T
Py
Pz

1

Linear Transformation in 3D

Scale:

Shear (in x, based on y,z position):

H;I:,d

o o =

d,

1
0

d;
0
1_

H;{;,d —

/s
H

o o o,

e Bian Ban N

3D-H

n
- <

o O LS

o
<

o O

o N oo

=
v

o = O

—-— O O O

-0 O O

Linear Transformation in 3D

Rotation about x axis:

1 0 0
R,9o= |0 cosf —sinf
0 sinf cosd

Rotation about y axis:
cosf 0[Jsind

Ryog= 0 1 0
(—sinf 0 cosé

Rotation about z axis:

cosf@ —sinf 0
R.p= |sin@ cost@ 0O
0 0 1

x coordinate is unchanged by
rotation about x

»x

z coordinate is unchanged by
rotation about z

View looking down -x axis:

Ay

A"*.
.

7% — >

v

View looking down -y axis:
AX

-
A‘ .,
)
]
>

ot

(MU 15-462/662, Fall 2015

Review of Translation in 2D

 Translation in 2D can be represented as ...

Matrix multiplication of
3x3 matrix
(in homogeneous coordinates)

Vector addition
(in Cartesian coordinates)

PRI 1 0 ugllp.
P + ux 0 1 wu,llp,
Pyl Ly 00 11

Translation in 3D

 Translation in 3D can be represented as ...

Matrix multiplication of
4x4 matrix
(in homogeneous coordinates)

Vector addition
(in Cartesian coordinates)

- - - - 1 0 0 wu.llp,
P Har 0 1 0 wuyfp,
Py| T | Uy 0 0 1 wu,l| p-
Pzl Ll 000 11

Review of Affine Transformation in 2D

 In homogeneous coordinates, 2D affine
transformation can be represented as multiplication
of 3x3 matrix:

linear part \[mll ml?] Uy | translational part

Mo Moo) Uy

0 0 1

e e |

Affine Transformation in 3D

 In homogeneous coordinates, 3D affine

transformation can be represented as multiplication
of 4x4 matrix:

linear part

%11 19 ml?

17121 T TN93
m m m

131 32 33,
0 0 0

translational part

[Practice] 3D Transformations

import glfw

from OpenGL.GL import *
from OpenGL.GLU import *
import numpy as np

def render (M) :
enable depth test
later)
glClear (GL COLOR BUFFER BIT |
GL_DEPTH BUFFER BIT)
glEnable (GL DEPTH TEST)

(we'll see details

glLoadIdentity ()
use orthogonal projection (we'll see
details later)
glOrtho(-1,1, -1,1, =-1,1)
rotate "camera" position to see this
3D space better (we'll see details later)
t = glfw.get time ()
gluLookAt (.l*np.sin(t),.1,
.1*np.cos(t), 0,0,0, 0,1,0)

draw coordinate system:
y in green, z in blue

glBegin(GL LINES)

glColor3ub (255, 0, 0)

glVertex3fv(np.array([0.,0.
glVertex3fv(np.array([1.,0.

glColor3ub (0, 255, 0)

glVertex3fv(np.array([0.,0.
glVertex3fv(np.array([0.,1.

glColor3ub (0, 0, 255)
glVertex3fv(np.array([0.,0
glVertex3fv(np.array([0.,0
glEnd ()

draw triangle - p'=Mp
glBegin (GL TRIANGLES)
glColor3ub (255, 255,
glVertex3fv ((M

np.array([.0,.5,0.,1.]1))[:-11)
glVertex3fv((M

np.array([.0,.0,0.,1.]7))[:-11)
glVertex3fv ((M

np.array([.5,.0,0.,1.]7))[:-11)
glEnd()

255)

X 1n red,

,0.1))
/0.1))

/0.1))
/0.1))

-+01))
-r1.1))

def main():
if not glfw.init():
return

window = glfw.create window (640,640,
"3D Trans", None,None)
if not window:
glfw.terminate ()
return
glfw.make context current (window)
glfw.swap interval (1)

while not
glfw.window should close(window) :
glfw.poll events()

rotate -60 deg about x axis
th = np.radians(-60)
R = np.array([[1.,0.,0.,0.]7,
[0., np.cos(th), -np.sin(th),0.],
[0., np.sin(th), np.cos(th),0.],
[0.,0.,0.,1.11)

translate by (.4, 0., .2)

T = np.array([[1., .,.41,
[0., .,0.1,
[O. .,.2],
[O. .,1.11)

M 4

M 4

~

M 4

O OB O~
oORr oo

~

M 4

render (R) # p'=Rp

render(T) # p'=Tp

render (T @ R) # p'=TRp
render(R @ T) # p'=RTp

glfw.swap buffers(window)
glfw.terminate ()

if name == " main ":
main ()

[Practice] Tips: Use Slicing

* You can use slicing for cleaner code (the behavior
IS the same as the previous page)

oL

rotate 60 deg about x axis

th = np.radians (-60)

R = np.identity (4)

R[:3,:3] = [[1.,0.,0.],
[0., np.cos(th), -np.sin(th)],
[0., np.sin(th), np.cos(th)]]

translate by (.4, 0., .2)
T = np.identity (4)
T[:3,3] = [.4, 0., .2]

oL

Quiz #1

* Go to https://www.slido.com/
* Join #cg-ys
* Click “Polls”

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked for “attendance”.

https://www.slido.com/

OpenGL Transformation
Functions

OpenGL “Current” Transformation Matrix

* OpenGL 1s a “state machine”.

— If you set a value for a state, it remains in effect until
you change it.

— ex1) current color
— ex2) current transformation matrix

* An OpenGL context keeps the “current”
transformation matrix somewhere in the memory.

OpenGL “Current” Transformation Matrix

« OpenGL always draws an object with the current
transformation matrix.

« Let’s say p IS a vertex position of an object,
« and C is the current transformation matrix,

 If you set the vertex position using gl\Vertex3fv(p),
* OpenGL will draw the vertex at the position of Cp

OpenGL “Current” Transformation Matrix

* Except today’s practice code (which use glOrtho() and
gluLookAt()), the current transformation matrix we’ve used
so far is the identity matrix.

« This Is done by glLoadldentity() - replace the current
matrix with the identity matrix.

B ' Hello World

* |f the current transformation
matrix Is the identity, all
objects are drawn In the
Normalized Device Coordinate
(NDC) space.

OpenGL Transformation Functions

* OpenGL provides a number of functions to manipulate the current
transformation matrix.

« At the beginning of each rendering iteration, you have to set the current matrix
to the identity matrix with glLoadldentity().

* Then you can manipulate the current matrix with following functions:

» Scale, rotate, translate with parameters
— glScale*()
— glRotate*()
— glTranslate*()
— OpenGL doesn’t provide functions like glShear*() and glReflect*()

» Direct manipulation of the current matrix
— gIMultMatrix*()

import glfw

from OpenGL.GL import *
from OpenGL.GLU import *
import numpy as np

gCamAng = 0.

def render (camAng) :
glClear (GL_COLOR BUFFER BIT|GL DEPTH BUFFER BIT)
glEnable (GL_DEPTH TEST)

set the current matrix to the identity matrix
glLoadIdentity ()

use orthogonal projection (multiply the current
matrix by "projection" matrix - we'll see details
later)

glOrtho(-1,1, -1,1, -1,1)

rotate "camera" position (multiply the current
matrix by "camera" matrix - we'll see details later)

gluLookAt (.1*np.sin(camAng),.1l,.l*np.cos(camAng),
0,0,0, 0,1,0)

draw coordinates
glBegin (GL LINES)

glColor3ub (255, 0, 0)
glVertex3fv(np.array([0.,0.,
glVertex3fv(np.array([1.,0.,
glColor3ub (0, 255, 0)
glVertex3fv(np.array([0.,0.,
glVertex3fv(np.array([0.,1.,
glColor3ub (0, 0, 255)
glVertex3fv(np.array([0.,0.,01))
glVertex3fv(np.array([0.,0.,1.1))
glEnd ()

o

-1))
-1))

o

o

-1))
-1))

o

HHHHHH GRS R RS RS AR SRS H S ##
edit here

[Practice] OpenGL
Trans. Functions

def key callback(window, key, scancode, action,
mods) :
global gCamAng
rotate the camera when 1 or 3 key is pressed
or repeated
if action==glfw.PRESS or action==glfw.REPEAT:
if key==glfw.KEY 1:
gCamAng += np.radians(-10)
elif key==glfw.KEY 3:
gCamAng += np.radians(10)

def main():
if not glfw.init():
return
window = glfw.create window(640,640, 'OpenGL
Trans. Functions', None,None)
if not window:
glfw.terminate ()
return
glfw.make context current(window)
glfw.set key callback(window, key callback)

while not glfw.window should close(window):
glfw.poll events()
render (gCamAng)
glfw.swap buffers(window)

glfw.terminate ()

LAY

if name == " main
main ()

[Practice] OpenGL Trans. Functions

def

def

drawTriangleTransformedBy (M) :

pl=(0,.5,0), p2=(0,0,0), pP3=(.5,0,0)
glBegin (GL TRIANGLES)

glVertex3fv ((M np.array([.0,.5,0.,1.1))[:-11)
glVertex3fv ((M np.array([.0,.0,0.,1.1))[:-11)
glVertex3fv ((M np.array([.5,.0,0.,1.1))[:-11)
glEnd()

drawTriangle () :

pl=(0,.5,0), p2=(0,0,0), pP3=(.5,0,0)
glBegin (GL TRIANGLES)
glVertex3fv(np.array([.0,.5,0.1))
glVertex3fv(np.array([.0,.0,0.1))
glVertex3fv(np.array([.5,.0,0.1))
glEnd()

glScale*()

» glScale*(x, y, z) - multiply the current matrix by a
scaling matrix

— X, Y, Z : scale factors along the X, y, and z axes

e [et’s call the current matrix C

 Calling glScale*(x, y, z) will update the current
matrix as follows: /
x 0

C «— CS (right-multiplication by S)

S=

=
= I+ = =

= o O O

[Practice] glScale*()

def render () :
...

edit here

glColor3ub (255, 255, 255)

1)& 2) all draw a triangle with the same transformation
(scale by [2., .5, 0.]) - p'= CSp
(C: current transformation matrix at this point)

1)
glScalef (2., .5, 0.)
drawTriangle ()

np.identity (4)
,0] = 2.

S[(1,1] = .5

S[(2,2] = 0.
drawTriangleTransformedBy (S)

HH= = H = =
— o |
-

glRotate™()

» glRotate*(angle, x, vy, z) - multiply the current
matrix by a rotation matrix

— angle : angle of rotation, in degrees
— X, ¥, Z:X,Y, zZ coord. value of rotation axis vector

 Calling glRotate*(angle, x, vy, z) will update the
current matrix as follows:

 C«— CR (right-multiplication by R)

R IS a rotation matrix

[Practice] glRotate™()

def render|():
oL

edit here

glColor3ub (255, 255, 255)

1)& 2) all draw a triangle with the same transformation
(rotate 60 deg about x axis) - p'= CRp
(C: current transformation matrix at this point)

1)
glRotatef (60, 1, 0, 0)
drawTriangle ()

2)

th = np.radians (60)

R = np.identity (4)

R[:3,:3] = [[1.,0.,0.7,

[0., np.cos(th), -np.sin(th)],
[0., np.sin(th), np.cos(th)]]
drawTriangleTransformedBy (R)

glTranslate*()

» glTranslate*(x, y, z) - multiply the current matrix
by a translation matrix

— X, V¥, Z:X,Y, Z coord. value of a translation vector

 Calling glTranslate*(x, y, z) will update the current
matrix as follows:

¢ C«— CT (right-multiplication by T)

=
=R = N L™
= = O O

[Practice] gl Translate®()

def render () :
...

edit here

glColor3ub (255, 255, 255)

1)& 2) all draw a triangle with the same transformation
(translate by [.4, 0, .2]) - p'= CTp
(C: current transformation matrix at this point)

1)
glTranslatef (.4, 0, .2)
drawTriangle ()

2)

T = np.identity (4)

T(:3,3] = [.4, 0., .2]
drawTriangleTransformedBy (T)

i
i
i
i

glMultMatrix*()

 giMultiMatrix*(m) - multiply the current
transformation matrix with the matrix m
— m : 4x4 column-major matrix
— Note that a np.ndarray object stores data in row-major order
— You have to pass the transpose of np.ndarray to
glMultMatrix()

If this is the memory layout of a stored 4x4 matrix:

m[0] | m[1] | m[2] | m[3] [m[4] | m[5] | m[6] | m[7] | m[8] [m[9] | m[10] [m[11] | m[12] | m[13] [m[14] | m[15]

m[0] m[4] m[8] m[12]] - m[0] m[l] m[2] m[3]
m[l] m[5] m[9] m[13] m[4] m[5] m[6] m|[T]
m[2] m[6] m[l0] m[14] m[8] m[9] m[10] m][l11]

| m[3] m[7] m[ll] m[15]_ | m[12] m[13] m[14] m][15]]

Column-major Row-major

glMultMatrix*()

 Calling glMultMatrix*(M) will update the current
matrix as follows:

* C«— CM (right-multiplication by M)

def render():

[Practice] Dl e
gIMUItMatriX*() # rotate 30 deg about x axis

th = np.radians (30)

R = np.identity(4)

R[:3,:3]1 = [[1.,0.,0.1,
[0., np.cos(th), -np.sin(th)],
[0., np.sin(th), np.cos(th)]]

translate by (.4, 0., .2)
T = np.identity(4)
T[:3,3] = [.4, 0., .2]

glColor3ub (255, 255, 255)

1)& 2)& 3) all draw a triangle with the same
transformation - p =CRTp

(C: current transformation matrix at this
moment)

1)
glMultMatrixf (R.T)
glMultMatrixf (T.T)
drawTriangle ()

2)
glMultMatrixf ((RQT) .T)
drawTriangle ()

=

3)
drawTriangleTransformedBy (R@QT)

Composing Transformations using OpenGL
Functions

* Let’s say the current matrix is the identity |

glTranslatef(x, vy, z) # T
glRotatef (angle, x, y, z) # R

o |drawTriangle() # p will update the
current matrixto TR

A vertex p of the triangle will be drawn at TRp
(p*=TRp)

* — pisfirst rotated by R, then translated by T.

Quiz #2

* Go to https://www.slido.com/
 Join #cg-hyu
* Click “Polls”

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked for “attendance”.

https://www.slido.com/

Fundamental Idea of Transformation

myyp M2 M3 U

mayp Moz M23 U2

mg3yp M3z 1M33 U3
0 0 0 1

0, — M p;
D, «— M,
05 — M p,

Fundamental idea

Implementation 1: Using
numpy matrix multiplication

Implementation 2: Using
OpenGL transformation

functions
gIMUItMatr|Xf(M) (M.T for numpy array)

: glVertex3fv(Mp,) glVertex3fv(p,)
01' «— Mp, glVertex3fv(Mp.) glVertex3fv(p.)
0, «— M P, |glvertex3fv(Mp.) glVertex3fv(p.)
gl\Vertex3fv(Mp,)) gl\Vertex3fv(p,)

(slicing Is omitted) (or you can use

pN' — M glScalef(x,y,z),

glRotatef(ang,x,y,z),
glTranslatef(x,y,z))

An array that stores all
vertex data.

This enables very fast
drawing.

(We'll cover it later)

Fundamental idea

Implementation 1: Using
numpy matrix multiplication

Implementation 2: Using
OpenGL transformation

functions
gIMUItMatr|Xf(M) (M.T for numpy array)

: glVertex3fv(Mp,) glVertex3fv(p,)
01' «— Mp, glVertex3fv(Mp.) glVertex3fv(p.)
0, «— M P, |glvertex3fv(Mp.) glVertex3fv(p.)
gl\Vertex3fv(Mp,)) gl\Vertex3fv(p,)

(slicing Is omitted) (or you can use

le — M glScalef(x,y,z),

glRotatef(ang,x,y,z),
glTranslatef(x,y,z))

An array that stores all
vertex data.

This enables very fast
drawing.

(We'll cover it later)

« Performance drawback:
CPU performs all matrix
multiplications

 Faster than the left method
because GPU performs
matrix multiplications

» (Actually, calling a large number of gl\Vertex3f() is not
applicable to serious OpenGL programs. Instead they use

vertex array.)

Fundamental Idea of Transformation

pN' — Mz Ml pN

Fundamental idea

Implementation 1: Using
numpy matrix multiplication

Implementation 2: Using
OpenGL transformation
functions

0, — M, M,
0, — M, M,
03— M, M,
le — Mz Ml

0
0,

03

gl\Vertex3fv(M,M,p,)
gl\Vertex3fv(M,M,p,)
gl\Vertex3fv(M,M,p.)

gl\Vertex3fv(M, M,)

(slicing Is omitted)

glMultMatrixf(M,)
glMultMatrixf(M,)
...0T...
glMultMatrixf(M,M,)
glVertex3fv(p,)
glVertex3fv(p,)
glVertex3fv(p.)

gl\Vertex3fv(p,)

(or you can use combination
of glScalef(x,y,z),
glRotatef(ang,x,y,z),
glTranslatef(x,y,z))

Fundamental Idea i1s Most Important!

* |f you see the term
“transformation”,
what you have to

think of Is:

* Not this one:

Py — Mp | [Py < M, Mp;
P, — Mp,||p, <~ M, Mp,
Ps «— M Py «— M, M,
Py — M Py — M, My
glScalef(x, vy, X)
glRotatef (angle, x, vy, 2z)
glTranslatef(x, vy, 2z)

Fundamental Idea i1s Most Important!

e glScalef(), glRotatef (), glTranslatef () areonlyin
legacy OpenGL, not in DirectX, Unity, Unreal, modern OpenGL, ...

« For example, in modern OpenGL, one have to directly multiply a
transformation matrix to a vertex position in vertex shader.

— Very similar to our first method — using numpy matrix multiplication

« That’s why I started the transformation lectures with numpy matrix
multiplication, not OpenGL transform functions.
— The fundamental idea is the most important!

« Butin this class, you have to know how to use these gl transformation
functions anyway.
— They provide much faster computation.

Affine Space & Coordinate-
Free Concepts

Coordinate-invariant (Coordinate-free)

 Traditionally, computer graphics packages are
Implemented using homogeneous coordinates.

* We will see affine space and coordinate-invariant
geometric programming concepts and their
relationship with the homogeneous coordinates.

* Because of historical reasons, It has been called
“coordinate-free”” geometric programming.

Points

Point p

Point g

 What is the “sum” of these two "points" ?

If you assume coordinates, ...
p = (X, y1)

q = (X2, ¥2)

 The sum is (Xit+Xz, yit+Yy2)
— Is it correct ?
— Is it geometrically meaningful ?

If you assume coordinates, ...

p = (X1, y1)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

e Vector sum

— (X1, y1) and (xz, y2) are considered as vectors from the origin to p
and q, respectively.

If you select a different origin, ...

p = (X1, y1)
(X1t+X2, Y1t+Yy2)

%
VRARN

7 N
/7 N
/7 N
7 N
7/ N
4 N
o \
& \
N
\ \
AN N
N AN
N \
N \
N N
\ \
N \
\ AN
\ N
AN \
N N
N
N
\
N

\ A q=(x, y2)
Origin l

 If you choose a different coordinate frame, you will get a
different result

Points and Vectors

o Point g

vew

Point p ©

A point is a position specified with coordinate values.
A vector is specified as the difference between two points.

If an origin is specified, then a point can be represented by a vector
from the origin.

But, a point is still not a vector in coordinate-free concepts.

Points & Vectors are Different!

Mathematically (and physically),
Points are locations in space.
Vectors are displacements in space.

An analogy with time:
Times (or datetimes) are locations in time.
Durations are displacements in time.

Vector and Affine Spaces

 Vector space
— Includes vectors and related operations
— No points

- Affine space
— Superset of vector space
— Includes vectors, points, and related operations

Vector spaces

 Avector space consists of
— Set of vectors, together with

— Two operations: addition of vectors and multiplication
of vectors by scalar numbers

e Alinear combination of vectors Is also a vector

u,,u,---,uy eV = CcyU,+Ccu,+---+C Uy eV

Affine Spaces

* An affine space consists of
— Set of points, an associated vector space, and

— Two operations: the difference between two points
and the addition of a vector to a point

Coordinate-Free Geometric Operations

e Addition
e Subtraction

« Scalar multiplication

Addition

p+w

u+v Vv W

P

u + Vv IS avector p +w is a point

u, v, w : vectors
P, d : points

Subtraction

P p-w
U/\V p/ /
\'
g P

u -V Is avector P - g IS a vector P - W is a point

u, v, w : vectors
P, d : points

Scalar Multiplication

scalar * vector = vector

1 « point = point

0 - point = vector

c * point = (undefined) if (c#0,1)

Affine Frame

« Aframe iIs defined as a set of vectors {vi| i=1, ..., N}
and a point o

— Set of vectors {vi} are bases of the associate vector

space
— 0 Is an origin of the frame
— N is the dimension of the affine space In 3D space
— Any point p can be written as | i
a point
P=0+CV,+C,V, +--+C\V, \'/
— Any vector v can be written as A\?

V=CV,+C,V, +-+-+C\V,

Summary

* In an affine space,

point + point = undefined

point — point = vector

point £ vector = point

vector * vector = vector

scalar « vector = vector

scalar ¢ point = point Iff scalar =1
= vector Iff scalar=0

= undefined otherwise

Points & Vectors in Homogeneous Coordinates

* In 3D spaces,
« Apoint is represented: (X, Yy, z, 1)
« A vector can be represented: (X, Y, z, 0)

(X1, Y1, 21, 1) + (X2, Y2, Z2, 1) = (X1+X2, Y1tY2, Z1+22, 2)
point point

(X1, Y1, 21, 1) - (X2, Y2, Z2, 1) = (X1-X2, Y1-Y2, Z1-Z2, Q)
point point vector

(X1, Y1, 21, 1) + (X2, Y2, Z2, 0) = (X1+X2, Y1tY2, Z1+22, 1)
point vector point

21

A Consistent Model

e Behavior of affine frame coordinates is
completely consistent with our intuition

e Subtracting two points yields a vector
e Adding a vector to a point produces a point

e If you multiply a vector by a scalar you still get
a vector

e Scaling points gives a nonsense 4th coordinate
element in most cases

a, | [b,] [a,—b,] a, | [v,] |a,+v,]
a, b,) a, —b, a, Vo | |3+,
a,| |b,| |a,—b, a, i v, | |a, +v,
1 1 0 1 0 1

— LR L T T kst

Points & Vectors in Homogeneous Coordinates

« Multiplying affine transformation matrix to a point
and a vector:

i I Y R

point — point vector — vector

 Note that translation is not applied to a vector!

Quiz #3

* Go to https://www.slido.com/
 Join #cg-hyu
* Click “Polls”

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2017123456: 4)

* Note that you must submit all quiz answers in the
above format to be checked for “attendance”.

https://www.slido.com/

Next Time

* Lab in this week:
— Lab assignment 4

* Next lecture:
— 5 - Affine Matrix, Rendering Pipeline

* Acknowledgement: Some materials come from the lecture slides of
— Prof. Kayvon Fatahalian and Prof. Keenan Crane, CMU, http://15462.courses.cs.cmu.edu/fall2015/
— Prof. Jehee Lee, SNU, http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.html
— Prof. Sung-eui Yoon, KAIST, https://sglab.kaist.ac.kr/~sungeui/CG/

http://15462.courses.cs.cmu.edu/fall2015/
http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.html
https://sglab.kaist.ac.kr/~sungeui/CG/

