
Computer Graphics

5 - Rendering Pipeline,Viewing & Projection 1

Yoonsang Lee

Spring 2021

Topics Covered

• Coordinate System & Reference Frame

• Rendering Pipeline & Vertex Processing

• Modeling transformation

• Viewing transformation

• Projection Transformation

– Orthographic (Orthogonal) Projection

Coordinate System & Reference Frame

• Coordinate system

– A system which uses one or more

numbers, or coordinates, to

uniquely determine the position of

points.

• Reference frame

– Abstract coordinate system +

physical reference points (to

uniquely fix the coordinate

system).

Coordinate System & Reference Frame

• Two terms are slightly different:

– Coordinate system is a mathematical concept, about a

choice of “language” used to describe observations.

– Reference frame is a physical concept related to state of

motion.

– You can think the coordinate system determines the way

one describes/observes the motion in each reference

frame.

• But these two terms are often mixed.

Global & Local Coordinate System(or Frame)

• Global coordinate system (or Global frame)

– A coordinate system(or frame) attached to the world.

– A.k.a. world coordinate system, fixed coordinate system

• Local coordinate system (or Local frame)

– A coordinate system(or frame) attached to a moving object.

https://commons.wikimedia.org/w
iki/File:Euler2a.gif

Blue: global coordinates
Red: local coordinates

https://commons.wikimedia.org/wiki/File:Euler2a.gif

Rendering Pipeline

Rendering Pipeline

• A conceptual model that describes what steps a

graphics system needs to perform to render a 3D

scene to a 2D image.

• Also known as graphics pipeline.

Rendering Pipeline

vertex

processing
rasterization

fragment

processing

output merging

: performs a

sequence of vertex

transformations

: assembles

polygons & converts

each polygon into a

set of fragments

(pixels)

: determines

color of each

fragment with

light & texture

Rendering Pipeline

vertex

processing
rasterization

fragment

processing

output merging

→ We’ll see today & next lecture

What we’ve been done so far
: performs a

sequence of vertex

transformations

Vertex Processing

glVertex3fv(p1)

glVertex3fv(p2)

glVertex3fv(p3)

…or

glVertex3fv(Mp1)

glVertex3fv(Mp2)

glVertex3fv(Mp3)

glMultMatrixf(MT)

glVertex3fv(p1)

glVertex3fv(p2)

glVertex3fv(p3)

Set vertex

positions

Transformed

vertices

Vertex positions in

2D viewport

M ?
Let’s think a “camera”

is watching the “scene”.

Then what we have to do are…

2. Placing the “camera”

3. Selecting a “lens”

4. Displaying on a “cinema screen”

1. Placing objects

In Terms of CG Transformation,

• 1. Placing objects

→ Modeling transformation

• 2. Placing the “camera”

→ Viewing transformation

• 3. Selecting a “lens”

→ Projection transformation

• 4. Displaying on a “cinema screen”

→ Viewport transformation

• All these transformations just work by matrix multiplications!

Vertex Processing (Transformation Pipeline)

World space

Object space

Translate, scale, rotate, ... any affine transformations

(What we’ve already covered in prev. lectures)

local coordinate system

global coordinate system

Vertex Processing (Transformation Pipeline)

World space

Object space

Modeling transformation

local coordinate system

global coordinate system

Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Placing the “camera”

global coordinate system

camera

coordinate

system

Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Viewing transformation

global coordinate system

camera

coordinate

system

Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Selecting a “lens”

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

normalized device

coordinate system

(NDC)

camera

coordinate

system

Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Projection transformation

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

normalized device

coordinate system

(NDC)

Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Screen space

(Image space)

Displaying on a

“cinema screen”

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

normalized device

coordinate system

(NDC)

screen

coordinate

system

Vertex Processing (Transformation Pipeline)

World space

Object space
View space

(Camera space)

Screen space

(Image space)

Viewport transformation

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

screen

coordinate

system

normalized device

coordinate system

(NDC)

Vertex Processing (Transformation Pipeline)

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection

transformation

Viewport

transformation

Viewing

transformation

Modeling

transformation

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

Vertex Processing (Transformation Pipeline)

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection

transformation

Viewport

transformation

Viewing

transformation

Modeling

transformation

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

All these transformations just work

by matrix multiplications!

Vertex Processing (Transformation Pipeline)

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection

transformation

: Mpj

Viewport

transformation

: Mvp

Viewing

transformation

: Mv

Modeling

transformation

: Mm

po ps

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

ps = Mvp Mpj Mv Mm po

Modeling Transformation

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Modeling

transformation

: Mm

po

pw

Canonical view volume

y

xz

(1,1,1)

(-1,-1,-1)

pw = Mm po

Modeling Transformation

• Geometry would originally have been in the object’s local
coordinates;

• Transform into world coordinates is called the modeling
matrix, Mm

• Composite affine transformations

• (What we’ve covered so far!)

World space

Object space
Translate, rotate, scale, ...

(Affine transformation)po

pw

Mm

Mm
wheel

Mm
cab

Mm
container

Wheel object space

Cab object space

Container object space

World space
local coordinates

global coordinates

Quiz #1

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Viewing Transformation

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Viewing

transformation

: Mv

pw

pv

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

pv = Mv pw

Recall that...

• 1. Placing objects

→ Modeling transformation

• 2. Placing the “camera”

→ Viewing transformation

• 3. Selecting a “lens”

→ Projection transformation

• 4. Displaying on a “cinema screen”

→ Viewport transformation

Viewing Transformation

• Placing the camera and expressing all object vertices
from the camera's point of view

• Transformation from world to view space is traditionally
called the viewing matrix, Mv

View space

(Camera space)

World space

Translate & rotate (Rigid

transformation)

Mv

pw

pv

Viewing Transformation

• Placing the camera

• → How to set the camera’s position &

orientation?

• Expressing all object vertices from the camera's

point of view

• → How to define the camera’s coordinate

system (frame)?

1. Setting Camera’s Position & Orientation

• Many ways to do this

• One intuitive way is using:

• Eye point

– Position of the camera

• Look-at point

– The target of the camera

• Up vector

– Roughly defines which direction is up

=Look-at point

2. Defining Camera’s Coordinate System

• Given eye point, look-at point, up vector, we can

get camera frame (Peye, u, v, w).

– For details, see 5 - reference-viewing.pdf

World space

pw

u

v
w

Peye

View space

(Camera space)

pv

?

Viewing Transformation is the Opposite

Direction

-1

View space

(Camera space)

pv

World space

pw

?

u

v
w

PeyeMv

Mv =

gluLookAt()

gluLookAt (eyex,eyey,eyez,atx,aty,atz,upx, upy,upz)
: creates a viewing matrix and right-multiplies the current

transformation matrix by it

C ← CMv

[Practice] gluLookAt()
import glfw

from OpenGL.GL import *

from OpenGL.GLU import *

import numpy as np

gCamAng = 0.

gCamHeight = .1

def render():

enable depth test (we'll see details later)

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glLoadIdentity()

use orthogonal projection (we'll see details later)

glOrtho(-1,1, -1,1, -1,1)

rotate "camera" position (right-multiply the current matrix by viewing

matrix)

try to change parameters

gluLookAt(.1*np.sin(gCamAng),gCamHeight,.1*np.cos(gCamAng), 0,0,0, 0,1,0)

drawFrame()

glColor3ub(255, 255, 255)

drawTriangle()

def drawFrame():

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([1.,0.,0.]))

glColor3ub(0, 255, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([0.,1.,0.]))

glColor3ub(0, 0, 255)

glVertex3fv(np.array([0.,0.,0]))

glVertex3fv(np.array([0.,0.,1.]))

glEnd()

def drawTriangle():

glBegin(GL_TRIANGLES)

glVertex3fv(np.array([.0,.5,0.]))

glVertex3fv(np.array([.0,.0,0.]))

glVertex3fv(np.array([.5,.0,0.]))

glEnd()

def key_callback(window, key, scancode, action,

mods):

global gCamAng, gCamHeight

if action==glfw.PRESS or action==glfw.REPEAT:

if key==glfw.KEY_1:

gCamAng += np.radians(-10)

elif key==glfw.KEY_3:

gCamAng += np.radians(10)

elif key==glfw.KEY_2:

gCamHeight += .1

elif key==glfw.KEY_W:

gCamHeight += -.1

def main():

if not glfw.init():

return

window =

glfw.create_window(640,640,'gluLookAt()',

None,None)

if not window:

glfw.terminate()

return

glfw.make_context_current(window)

glfw.set_key_callback(window,

key_callback)

while not

glfw.window_should_close(window):

glfw.poll_events()

render()

glfw.swap_buffers(window)

glfw.terminate()

if __name__ == "__main__":

main()

Moving Camera vs. Moving World

• Actually, these are two equivalent operations

• Translate camera by (1, 0, 2) == Translate world by (-1, 0, -2)

• Rotate camera by 60° about y ==Rotate world by -60° about y

Moving Camera vs. Moving World

• Thus you also can use glRotate*() or glTranslate*()
to manipulate the camera!

• Using gluLookAt() is just one option of many other
choices to manipulate the camera.

• By default, OpenGL places a

camera at the origin pointing in

negative z direction.

Modelview Matrix

• As we’ve just seen, moving camera & moving

world are equivalent operations.

• That’s why OpenGL combines a viewing matrix Mv

and a modeling matrix Mm into a modelview matrix

M=MvMm

Quiz #2

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Projection Transformation

View space

(Camera space)

World space

Object space
Screen space

(Image space)

Projection

transformation

Canonical view volume

(Normalized device coordinates, NDC)

y

xz

(1,1,1)

(-1,-1,-1)

Recall that...

• 1. Placing objects

→ Modeling transformation

• 2. Placing the “camera”

→ Viewing transformation (covered in the last class)

• 3. Selecting a “lens”

→ Projection transformation

• 4. Displaying on a “cinema screen”

→ Viewport transformation

Review:Normalized Device Coordinates

• Called normalized device

coordinates (NDC)

• Also known as canonical

view volume

• Remember that you could draw the triangle anywhere

in a 2D square ranging from [-1, -1] to [1, 1].

1

-1

-1 1

x

y

Canonical View “Volume”

• Actually, a canonical view volume is a 3D cube
ranging from [-1,-1,-1] to [1,1,1] in OpenGL

– Its coordinate system is NDC

• Its xy plane is a 2D “viewport”

• Note that NDC in OpenGL is a left-handed
coordinate system

– Viewing direction in NDC : +z direction

• But OpenGL’s projection functions change the
hand-ness – Thus view, world, model spaces use
right-handed coordinate system

– Viewing direction in view space : -z direction

Canonical View Volume

• OpenGL only draws objects inside

the canonical view volume

– To draw objects only in the camera’s

view

– Not to draw objects too near or too far

from the camera

X

Do we always have to use the cube of size 2

as a view volume?

• No. You can set any size visible volume and draw
objects inside it.

– Even you can use “frustums” as well as cuboids

• Then everything in the visible volume is mapped
(projected) into the canonical view volume.

• Then 3D points in the canonical view volume are
projected onto its xy plane as 2D points.

• → Projection transformation

Projection in General

• General definition:

• Transforming points in n-space to m-space (m<n)

Projection in Computer Graphics

• Mapping 3D coordinates to 2D screen
coordinates.

• Two stages:

– Map an arbitrary view volume to a canonical view
volume

– Map 3D points in the canonical view volume onto
its xy plane : But we still need z values of points
for depth test, so do not consider this second stage

• Two common projection methods

– Orthographic projection

– Perspective projection

Orthographic (Orthogonal) Projection

• View volume : Cuboid (직육면체)

• Orthographic projection : Mapping from a cuboid view

volume to a canonical view volume

– Combination of scaling & translation

→ “Windowing” transformation

y

x

z

y

xz

to change hand-ness (to

flip positive z direction)

• Transformation that maps a point (px, py) in a

rectangular space from (xl, yl) to (xh, yh) to a point

(px’, py’) in a rectangular space from (xl’, yl’) to

(xh’, yh’)

Windowing Transformation

(px’, py’)

(px, py)

px

py

1

px’

py’

1

=

px

py

1

px’

py’

1

=

Orthographic Projection Matrix

• By extending the matrix to 3D and substituting

– xh=right, xl=left, xh’=1, xl’=-1

– yh=top, yl=bottom, yh’=1, yl’=-1

– zh=-far, zl=-near, zh’=1, zl’=-1

Morth =

Examples of Orthographic Projection

An object always stay the same size, no matter its distance from the viewer.

Properties of Orthographic Projection

• Not realistic looking

• Good for exact measurement

• Most often used in CAD, architectural drawings, etc. where
taking exact measurement is important

• Affine transformation

- parallel lines remain parallel

- ratios are preserved

- angles are often not preserved

y

x

z

glOrtho()

• glOrtho(left, right, bottom, top, zNear, zFar)

• : Creates a orthographic projection matrix and

right-multiplies the current transformation matrix

by it

• Sign of zNear, zFar:

– positive value: the plane is in front of the camera

– negative value: the plane is behind the camera.

• C ← CMorth

[Practice] glOrtho

import glfw

from OpenGL.GL import *

from OpenGL.GLU import *

import numpy as np

gCamAng = 0.

gCamHeight = 1.

draw a cube of side 1, centered at the origin.

def drawUnitCube():

glBegin(GL_QUADS)

glVertex3f(0.5, 0.5,-0.5)

glVertex3f(-0.5, 0.5,-0.5)

glVertex3f(-0.5, 0.5, 0.5)

glVertex3f(0.5, 0.5, 0.5)

glVertex3f(0.5,-0.5, 0.5)

glVertex3f(-0.5,-0.5, 0.5)

glVertex3f(-0.5,-0.5,-0.5)

glVertex3f(0.5,-0.5,-0.5)

glVertex3f(0.5, 0.5, 0.5)

glVertex3f(-0.5, 0.5, 0.5)

glVertex3f(-0.5,-0.5, 0.5)

glVertex3f(0.5,-0.5, 0.5)

glVertex3f(0.5,-0.5,-0.5)

glVertex3f(-0.5,-0.5,-0.5)

glVertex3f(-0.5, 0.5,-0.5)

glVertex3f(0.5, 0.5,-0.5)

glVertex3f(-0.5, 0.5, 0.5)

glVertex3f(-0.5, 0.5,-0.5)

glVertex3f(-0.5,-0.5,-0.5)

glVertex3f(-0.5,-0.5, 0.5)

glVertex3f(0.5, 0.5,-0.5)

glVertex3f(0.5, 0.5, 0.5)

glVertex3f(0.5,-0.5, 0.5)

glVertex3f(0.5,-0.5,-0.5)

glEnd()

def drawCubeArray():

for i in range(5):

for j in range(5):

for k in range(5):

glPushMatrix()

glTranslatef(i,j,-k-1)

glScalef(.5,.5,.5)

drawUnitCube()

glPopMatrix()

def drawFrame():

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([1.,0.,0.]))

glColor3ub(0, 255, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([0.,1.,0.]))

glColor3ub(0, 0, 255)

glVertex3fv(np.array([0.,0.,0]))

glVertex3fv(np.array([0.,0.,1.]))

glEnd()

def key_callback(window, key, scancode, action,

mods):

global gCamAng, gCamHeight

if action==glfw.PRESS or

action==glfw.REPEAT:

if key==glfw.KEY_1:

gCamAng += np.radians(-10)

elif key==glfw.KEY_3:

gCamAng += np.radians(10)

elif key==glfw.KEY_2:

gCamHeight += .1

elif key==glfw.KEY_W:

gCamHeight += -.1

def main():

if not glfw.init():

return

window =

glfw.create_window(640,640,‘glOrtho()',

None,None)

if not window:

glfw.terminate()

return

glfw.make_context_current(window)

glfw.set_key_callback(window, key_callback)

while not glfw.window_should_close(window):

glfw.poll_events()

render()

glfw.swap_buffers(window)

glfw.terminate()

if __name__ == "__main__":

main()

def render():

global gCamAng, gCamHeight

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

draw polygons only with boundary edges

glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)

glLoadIdentity()

test other parameter values

near plane: 10 units behind the camera

far plane: 10 units in front of

the camera

glOrtho(-5,5, -5,5, -10,10)

gluLookAt(1*np.sin(gCamAng),gCamHeight,1*np.cos(

gCamAng), 0,0,0, 0,1,0)

drawFrame()

glColor3ub(255, 255, 255)

drawUnitCube()

test

drawCubeArray()

Quiz #3

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Next Time

• Lab in this week:

– Lab assignment 5

• Next lecture:

– 6 - Viewing & Projection 2, Mesh

• Class Assignment #1

– Due: 23:59, April 11, 2021

• Acknowledgement: Some materials come from the lecture slides of

– Prof. Jinxiang Chai, Texas A&M Univ., http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html

http://faculty.cs.tamu.edu/jchai/csce441_2016spring/lectures.html

