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Topics Covered

• Meanings of an Affine Transformation Matrix

• Interpretation of a Series of Transformations

• Hierarchical Modeling

– Concept of Hierarchical Modeling

– OpenGL Matrix Stack



Meanings of an Affine 

Transformation Matrix



Meanings of an Affine Transformation

Matrix

• To understand hierarchical modeling, let's first take 

a closer look at the meaning of an affine 

transformation matrix.



1) A 4x4 Affine Transformation Matrix

transforms a Geometry w.r.t. Global Frame

M = 

{global frame}

Translate, rotate, scale, ...

Every vertex position (w.r.t. the global frame) 

of the cube is transformed to another position 

(w.r.t. the global frame)

Transformed geometry



Review: Affine Frame

• An affine frame in 3D space is defined by three 

vectors and one point

– Three vectors for x, y, z axes

– One point for origin



Global Frame

• A global frame is usually represented by

– Standard basis vectors for axes : 

– Origin point : 



Let’s transform a "global frame"

• Apply M to this "global frame", that is,

– Multiply M with the x, y, z axis vectors and the origin 

point of the global frame:

x axis vector y axis vector

z axis vector origin point



2) A 4x4 Affine Transformation Matrix

defines an Affine Frame w.r.t. Global Frame

M = 

{frame 1} 

(object's local frame)

{global frame}

→ M is the axis vectors and 

origin point of a new frame 

(represented in the global 

frame)

x axis 

vector

y axis 

vector origin 

point

z axis 

vector



Examples

The object's local

frame is defined by:

The object's local 

frame is defined by:

x axis 

vector y axis 

vector

origin 

point
z axis 

vector

of the local frame 

represented in the global 

frame

x axis 

vector
y axis 

vector

origin 

point

z axis 

vector



3) A 4x4 Affine Transformation Matrix transforms

a Point Represented in an Affine Frame to (the

same) Point (but) Represented in Global Frame

{0}

(global frame)

p{1}: Standing at {1}, 

observing p

p{1} is the position of p

w.r.t local frame 

(frame {1})

p{0}=Mp{1}

Standing at {0}, observing p

p{0} is the position of p w.r.t. global frame (frame {0})

M = {1}

p{1} = (1, 1, 0)



p{0}=Mp{1}

3) A 4x4 Affine Transformation Matrix transforms

a Point Represented in an Affine Frame to (the

same) Point (but) Represented in Global Frame

Because...

{0}

(global frame)

Let’s say we 

have the same 

cube object 

and its local 

frame 

coincident with 

the global 

frame

M = 

Then, it’s a just story of 

transforming a geometry!

p{1} = (1, 1, 0)

p{1} = (1, 1, 0)

{1}



Quiz #1

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the 

above format to be checked for “attendance”.

https://www.slido.com/


All these concepts works even if the starting

frame is not global frame!

{2}

{0}

(global frame)

M1

M2

{1}



{0} to {1}

• 1) M1 transforms a geometry (represented in {0}) w.r.t. {0}

• 2) M1 defines an {1} w.r.t. {0}

• 3) M1 transforms a point represented in {1} to the same point but 
represented in {0}

– pa
{0}=M1pa

{1}

{2}

{0}

(global frame)

M1

M2

{1}

pa
{1} = (1, 1, 0)



{1} to {2}

• 1) M2 transforms a geometry (represented in {1}) w.r.t. {1}

• 2) M2 defines an {2} w.r.t. {1}

• 3) M2 transforms a point represented in {2} to the same point but 
represented in {1}

– pb
{1}=M2pb

{2}

{2}

{0}

(global frame)

M1

M2

{1}

pb
{2} = (1, 1, 0)



{0} to {2}

• 1) M1M2 transforms a geometry (represented in {0}) w.r.t. {0}

• 2) M1M2 defines an {2} w.r.t. {0}

• 3) M1M2 transforms a point represented in {2} to the same point but 
represented in {0}

– pb
{1}=M2pb

{2}, pb
{0}=M1pb

{1}=M1M2pb
{2}

M1M2

{2}

{0}

(global frame)

M1

M2

{1}

pb
{2} = (1, 1, 0)



Interpretation of a Series of 

Transformations



Revisit: Order Matters!

• If T and R are matrices representing 
affine transformations,

• p' = TRp

– First apply transformation R to point p, 
then apply transformation T to transformed 
point Rp

• p' = RTp

– First apply transformation T to point p, 
then apply transformation R to transformed 
point Tp



Interpretation of Composite Transformations #1

• An example transformation:

• This is how we’ve interpreted so far:

– R-to-L: Transforms w.r.t. global frame

p

p'' = T(Rp)p' = Rp

M



Interpretation of Composite Transformations #2

• An example transformation:

• Another way of interpretation:

– L-to-R: Transforms w.r.t. local frame

M = T

M = TR

M = I
p'' = TRp

p

p' = Tp

M



Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p

M1
M2

M3

M4



Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p = (1, 1, 0)

Standing at {4}, observing p

p{4} = p



Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p

Standing at {3}, observing p

p{3} = M4 p

M4



Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p

Standing at {2}, observing p

p{2} = M3 M4 p

M3

M4



Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p

Standing at {1}, observing p

p{1} = M2 M3 M4 p

M3

M4

M2



Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p

Standing at {0}, observing p

p{0} = M1 M2 M3 M4 p

M3

M4

M2M1



Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)

p



Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)

M1

p'

Standing at {0}, observing p'

p' = M1 p



Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)

M1
M2 p'

Standing at {0}, observing p'

p' = M1 M2 p



Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)

M1
M2

M3

p'

Standing at {0}, observing p'

p' = M1 M2 M3 p



Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p`

M1
M2

M3

M4

Standing at {0}, observing p'

p' = M1 M2 M3 M4 p



Left & Right Multiplication

• Thinking it deeper, we can see:

• p' = RTp (left-multiplication by R)

– (R-to-L) Apply T to a point p w.r.t. global frame.

– Apply R to a point Tp w.r.t. global frame.

• p' = TRp (right-multiplication by R)

– (L-to-R) Apply T to a point p w.r.t. local frame.

– Apply R to a point Tp w.r.t local frame.



[Practice] Interpretation of Composite

Transformations

• Just start from the Lecture 4 practice code 

"[Practice] OpenGL Trans. Functions".

• Differences are:
def drawFrame():

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([1.,0.,0.]))

glColor3ub(0, 255, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([0.,1.,0.]))

glColor3ub(0, 0, 255)

glVertex3fv(np.array([0.,0.,0]))

glVertex3fv(np.array([0.,0.,1.]))

glEnd()



[Practice] Interpretation of Composite

Transformations

def render(camAng):

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glLoadIdentity()

glOrtho(-1,1, -1,1, -1,1)

gluLookAt(.1*np.sin(camAng),.1,.1*np.cos(camAng), 0,0,0, 0,1,0)

# draw global frame

drawFrame()

# 1) p'=TRp

glTranslatef(.4, .0, 0)

drawFrame() # frame defined by T

glRotatef(60, 0, 0, 1)

drawFrame() # frame defined by TR

# # 2) p'=RTp

# glRotatef(60, 0, 0, 1)

# drawFrame()   # frame defined by R

# glTranslatef(.4, .0, 0)

# drawFrame()   # frame defined by RT

drawTriangle()



Quiz #2

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the 

above format to be checked for “attendance”.

https://www.slido.com/


Hierarchical Modeling



Hierarchical Modeling

• Nesting the description of subparts (child parts) into another part 
(parent part) to form a tree structure

• Each part has its own reference frame (local frame).

• Each part's movement is described w.r.t. its parent's reference 
frame.



Another Example - Human Figure

Hips

Spine

Head RightArm LeftArm

RightForeArm

RightHand

LeftForeArm

LeftHand

RightUpLeg

RightLeg

RightFoot

LeftUpLeg

LeftLeg

LeftFoot



Human Figure - Frames

• Each part has its own reference frame (local 

frame).



Human Figure - Movement of rhip & rknee

• Each part's movement is described w.r.t. its parent's 

reference frame.

– Each part has its own transformation w.r.t. parent part's frame

– "Grouping"

https://youtu.be/Q7lhvMkCSCg https://youtu.be/Q5R8WGUwpFU

https://youtu.be/Q7lhvMkCSCg
https://youtu.be/Q5R8WGUwpFU


Human Figure - Movement of more joints

• Each part's movement is described w.r.t. its parent's 

reference frame.

– Each part has its own transformation w.r.t. parent part's frame

– "Grouping"

https://youtu.be/9dz8bvVK9zc https://youtu.be/PEhyWI8LGBY

https://youtu.be/9dz8bvVK9zc
https://youtu.be/PEhyWI8LGBY


Articulated Body

• A common type of hierarchical 
model used in CG is an articulated 
body

– that has objects that are connected end 
to end to form multibody jointed chains.

– a.k.a. kinematic chain, linkage (robotics)

• Terminologies

– Joint - a connection between two objects 
which allows some motion

– Link - a rigid object between joints

– End effector - a free end of a kinematic 
chain



Articulated Body

• An articulated body is represented by a graph structure.

– A tree structure is most commonly used.

• Each node has its own transformation w.r.t. parent 

node’s frame

Hips

Spine

Head RightArm LeftArm

RightForeArm

RightHand

LeftForeArm

LeftHand

RightUpLeg

RightLeg

RightFoot

LeftUpLeg

LeftLeg

LeftFoot



Scene Graph

• A graph structure that represents an entire scene.



Rendering Hierarchical Models in OpenGL

• OpenGL provides a useful way of drawing objects 

in a hierarchical structure.

• → Matrix stack



OpenGL Matrix Stack

• A stack for transformation matrices

– Last In First Outs

• You can save the current 
transformation matrix and then 
restore it after some objects have 
been drawn

• Useful for traversing hierarchical 
data structures (i.e. scene graph or 
tree)



OpenGL Matrix Stack

• glPushMatrix()

– Pushes the current matrix onto the stack.

• glPopMatrix()

– Pops the matrix off the stack.

• The current matrix is the matrix on the top of the 
stack!

• Keep in mind that the numbers of glPushMatrix() 
calls and glPopMatrix() calls must be the same.



A simple

example

Start with identity matrix

glPushMatrix()

glTranslate(T)  # to translate base

glPushMatrix()

glScale(S)  # scaling for drawing

drawBox()

glPopMatrix()

glPushMatrix()

glRotate(R)  # to rotate arm

glPushMatrix()

glScale(U) # scaling for drawing

drawBox()

glPopMatrix()

glPopMatrix()

glPopMatrix()

I

Bold text is the current 

transformation matrix 

(the one at the top of the 

matrix stack)

I

I T

I

T

T

I
TS

T

I

T

I
T

T

I
TR

T

I

TR

TR

T

I

TRU

TR

T

I

TR

T

I T

I

I

drawBox(): draw a unit box

?
p'=TSp

p'=TRUp



[Practice] Matrix Stack
# modeling transformation

# blue base transformation

glPushMatrix()

glTranslatef(np.sin(t), 0, 0)

# blue base drawing

glPushMatrix()

glScalef(.2, .2, .2)

glColor3ub(0, 0, 255)

drawBox()

glPopMatrix()

# red arm transformation

glPushMatrix()

glRotatef(t*(180/np.pi), 0, 0, 1)

glTranslatef(.5, 0, .01)

# red arm drawing

glPushMatrix()

glScalef(.5, .1, .1)

glColor3ub(255, 0, 0)

drawBox()

glPopMatrix()

glPopMatrix()

glPopMatrix()

import glfw

from OpenGL.GL import *

import numpy as np

from OpenGL.GLU import *

gCamAng = 0

def render(camAng):

# enable depth test (we'll see 

details later)

glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glLoadIdentity()

# projection transformation

glOrtho(-1,1, -1,1, -1,1)

# viewing transformation

gluLookAt(.1*np.sin(camAng),.1,

.1*np.cos(camAng), 0,0,0, 0,1,0)

drawFrame()

t = glfw.get_time()



def drawBox():

glBegin(GL_QUADS)

glVertex3fv(np.array([1,1,0.]))

glVertex3fv(np.array([-1,1,0.]))

glVertex3fv(np.array([-1,-1,0.]))

glVertex3fv(np.array([1,-1,0.]))

glEnd()

def drawFrame():

# draw coordinate: x in red, y in 

green, z in blue

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([1.,0.,0.]))

glColor3ub(0, 255, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([0.,1.,0.]))

glColor3ub(0, 0, 255)

glVertex3fv(np.array([0.,0.,0]))

glVertex3fv(np.array([0.,0.,1.]))

glEnd()<

def key_callback(window, key, scancode, action,

mods):

global gCamAng, gComposedM

if action==glfw.PRESS or

action==glfw.REPEAT:

if key==glfw.KEY_1:

gCamAng += np.radians(-10)

elif key==glfw.KEY_3:

gCamAng += np.radians(10)

def main():

if not glfw.init():

return

window =

glfw.create_window(640,640,"Hierarchy",

None,None)

if not window:

glfw.terminate()

return

glfw.make_context_current(window)

glfw.set_key_callback(window, key_callback)

glfw.swap_interval(1)

while not glfw.window_should_close(window):

glfw.poll_events()

render(gCamAng)

glfw.swap_buffers(window)

glfw.terminate()

if __name__ == "__main__":

main()



Quiz #3

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the 

above format to be checked for “attendance”.

https://www.slido.com/


OpenGL Matrix Stack Types

• Actually, OpenGL maintains four different types of matrix stacks:

• Modelview matrix stack (GL_MODELVIEW)

– Stores model view matrices. 

– This is the default type (what we’ve just used)

• Projection matrix stack (GL_PROJECTION)

– Stores projection matrices

• Texture matrix stack (GL_TEXTURE)

– Stores transformation matrices to adjust texture coordinates. Mostly used to 
implement texture projection (like an image projected by a beam projector)

• Color matrix stack (GL_COLOR)

– Rarely used. Just ignore it.

• You can switch the current matrix stack type using glMatrixMode()

– e.g. glMatrixMode(GL_PROJECTION) to select the projection matrix stack



OpenGL Matrix Stack Types

• A common guide 

is something like:

• Projection transformation functions (gluPerspective(), glOrtho(), …) 
should be called with glMatrixMode(GL_PROJECTION).

• Modeling & viewing transformation functions (gluLookAt(), 
glTranslate(), …) should be called with 
glMatrixMode(GL_MODELVIEW).

• Otherwise, you’ll get wrong lighting results.



[Practice] With Correct Matrix Stack Types
# modeling transformation

# blue base transformation

glPushMatrix()

glTranslatef(np.sin(t), 0, 0)

# blue base drawing

glPushMatrix()

glScalef(.2, .2, .2)

glColor3ub(0, 0, 255)

drawBox()

glPopMatrix()

# red arm transformation

glPushMatrix()

glRotatef(t*(180/np.pi), 0, 0, 1)

glTranslatef(.5, 0, .01)

# red arm drawing

glPushMatrix()

glScalef(.5, .1, .1)

glColor3ub(255, 0, 0)

drawBox()

glPopMatrix()

glPopMatrix()

glPopMatrix()

def render(camAng):

# enable depth test (we'll see 

details later)

glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glMatrixMode(GL_PROJECTION)

glLoadIdentity()

# projection transformation

glOrtho(-1,1, -1,1, -1,1)

glMatrixMode(GL_MODELVIEW)

glLoadIdentity()

# viewing transformation

gluLookAt(.1*np.sin(camAng),.1,

.1*np.cos(camAng), 0,0,0, 0,1,0)

drawFrame()

t = glfw.get_time()



Next Time

• Lab in this week:

– Lab assignment 8

• Next lecture:

– 9 - Orientation & Rotation
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– Prof. Kayvon Fatahalian and Keenan Crane, CMU, http://15462.courses.cs.cmu.edu/fall2015/
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