Computer Graphics

8 - Hierarchical Modeling

Yoonsang Lee
Spring 2021

Topics Covered

- Meanings of an Affine Transformation Matrix
- Interpretation of a Series of Transformations
- Hierarchical Modeling
- Concept of Hierarchical Modeling
- OpenGL Matrix Stack

Meanings of an Affine Transformation Matrix

Meanings of an Affine Transformation Matrix

- To understand hierarchical modeling, let's first take a closer look at the meaning of an affine transformation matrix.

1) A $4 x 4$ Affine Transformation Matrix transforms a Geometry w.r.t. Global Frame

Translate, rotate, scale, ...
\{global frame\}

Transformed geometry

Every vertex position (w.r.t. the global frame) of the cube is transformed to another position (w.r.t. the global frame)

Review: Affine Frame

- An affine frame in 3D space is defined by three vectors and one point
- Three vectors for $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axes
- One point for origin

Global Frame

- A global frame is usually represented by
- Standard basis vectors for axes : $\hat{\mathbf{e}}_{x}, \hat{\mathbf{e}}_{y}, \hat{\mathbf{e}}_{z}$
- Origin point : 0

$$
\begin{gathered}
\hat{\mathbf{e}}_{y}=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]^{T} \\
{\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]^{T}=\mathbf{0}} \\
\hat{\mathbf{e}}_{z}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]^{T}=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]^{T}
\end{gathered}
$$

Let's transform a 'global frame"

- Apply M to this "global frame", that is,
- Multiply M with the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis vectors and the origin point of the global frame:
x axis vector
$\left[\begin{array}{cccc}m_{11} & m_{12} & m_{13} & u_{x} \\ m_{21} & m_{22} & m_{23} & u_{y} \\ m_{31} & m_{32} & m_{33} & u_{z} \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}m_{11} \\ m_{21} \\ m_{31} \\ 0\end{array}\right]$
z axis vector

$$
\left[\begin{array}{cccc}
m_{11} & m_{12} & m_{13} & u_{x} \\
m_{21} & m_{22} & m_{23} & u_{y} \\
m_{31} & m_{32} & m_{33} & u_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
m_{13} \\
m_{23} \\
m_{33} \\
0
\end{array}\right]
$$

y axis vector

$$
\left[\begin{array}{cccc}
m_{11} & m_{12} & m_{13} & u_{x} \\
m_{21} & m_{22} & m_{23} & u_{y} \\
m_{31} & m_{32} & m_{33} & u_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
m_{12} \\
m_{22} \\
m_{32} \\
0
\end{array}\right]
$$

origin point

$$
\left[\begin{array}{cccc}
m_{11} & m_{12} & m_{13} & u_{x} \\
m_{21} & m_{22} & m_{23} & u_{y} \\
m_{31} & m_{32} & m_{33} & u_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
u_{x} \\
u_{y} \\
u_{z} \\
1
\end{array}\right]
$$

2) A $4 x 4$ Affine Transformation Matrix defines an Affine Frame w.r.t. Global Frame

Examples

3) A 4×4 Affine Transformation Matrix transforms

 a Point Represented in an Affine Frame to (the same) Point (but) Represented in Global Frame
3) A 4×4 Affine Transformation Matrix transforms a Point Represented in an Affine Frame to (the same) Point (but) Represented in Global Frame Because...

Let's say we have the same cube object and its local frame coincident wit $\{0\}$ the global frame

Then, it's a just story of transforming a geometry!

Quiz \#1

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

All these concepts works even if the starting frame is not global frame!

\{1\}

- 1) $\mathbf{M}_{\mathbf{1}}$ transforms a geometry (represented in $\{0\}$) w.r.t. $\{0\}$
- 2) $\mathbf{M}_{\mathbf{1}}$ defines an $\{\mathbf{1}\}$ w.r.t. $\{0\}$
- 3) \mathbf{M}_{1} transforms a point represented in $\{\mathbf{1}\}$ to the same point but represented in $\{0\}$
$-\mathbf{p a}^{\{0\}}=\mathbf{M}_{1} \mathbf{p a}^{\text {a }}{ }^{\{1\}}$

$\{1\}$ to $\{2\}$

- 1) $\mathbf{M}_{\mathbf{2}}$ transforms a geometry (represented in $\left.\{\mathbf{1}\}\right)$ w.r.t. $\{\mathbf{1}\}$
- 2) \mathbf{M}_{2} defines an $\{2\}$ w.r.t. $\{\mathbf{1}\}$
- 3) \mathbf{M}_{2} transforms a point represented in $\{2\}$ to the same point but represented in \{1\}
$-\mathbf{p}_{b}{ }^{\{1\}}=\mathbf{M}_{2} \mathbf{p}_{b}{ }^{\{2\}}$

$\{0\}$ to $\{2\}$

- 1) $\mathbf{M}_{1} \mathbf{M}_{2}$ transforms a geometry (represented in $\{0\}$) w.r.t. $\{0\}$
- 2) $\mathbf{M}_{1} \mathbf{M}_{\mathbf{2}}$ defines an $\{2\}$ w.r.t. $\{0\}$
- 3) $\mathbf{M}_{1} \mathbf{M}_{2}$ transforms a point represented in $\{2\}$ to the same point but represented in $\{0\}$
$-\mathbf{p}_{b}{ }^{\{1\}}=\mathrm{M}_{2} \mathbf{p}_{\mathrm{b}}{ }^{\{2\}}, \mathbf{p}_{\mathrm{b}}{ }^{\{0\}}=\mathrm{M}_{1} \mathbf{p}_{\mathrm{b}}{ }^{\{1\}}=\mathrm{M}_{1} \mathrm{M}_{2} \mathbf{p}_{\mathrm{b}}{ }^{\{2\}}$

Interpretation of a Series of Transformations

Revisit: Order Matters!

- If T and R are matrices representing affine transformations,
- $\mathbf{p}^{\prime}=\mathrm{TR} \mathbf{p}$
- First apply transformation R to point \mathbf{p}, then apply transformation T to transformed point $\mathbf{R p}$
- $\mathbf{p}^{\prime}=\mathrm{RT} \mathbf{p}$
- First apply transformation T to point \mathbf{p}, then apply transformation R to transformed point Tp

Rotate then Translate

Translate then Rotate

Interpretation of Composite Transformations \#1

- An example transformation:

$$
\mathbf{M}=\mathbf{T}(x, 3) \cdot \mathbf{R}\left(-90^{\circ}\right)
$$

- This is how we've interpreted so far:
- R-to-L: Transforms w.r.t. global frame

Interpretation of Composite Transformations \#2

- An example transformation:

$$
\mathbf{M}=\mathbf{T}(x, 3) \cdot \mathbf{R}\left(-90^{\circ}\right)
$$

- Another way of interpretation:
- L-to-R: Transforms w.r.t. local frame

Interpretation of a Series of Transformations \#1

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

Interpretation of a Series of Transformations \#1

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

\{4\}

$$
\begin{aligned}
& \text { Standing at }\{4\} \text {, observing } p \\
& \mathrm{p}^{\{4\}}=\mathrm{p}
\end{aligned}
$$

Interpretation of a Series of Transformations \#1

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

Interpretation of a Series of Transformations \#1

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

Interpretation of a Series of Transformations \#1

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

Interpretation of a Series of Transformations \#1

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

Interpretation of a Series of Transformations \#2

- $\mathrm{p}^{\prime}=\left[\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}\right.$

\{3\}
\{4\}

Interpretation of a Series of Transformations \#2

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

\{2\}

\{4\}

Standing at $\{0\}$, observing p^{\prime} $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{p}$

Interpretation of a Series of Transformations \#2

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

\{1\}

$$
\begin{aligned}
& \text { Standing at }\{0\} \text {, observing } p^{\prime} \\
& \mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{p}
\end{aligned}
$$

\{4\}

Interpretation of a Series of Transformations \#2

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

Interpretation of a Series of Transformations \#2

- $\mathrm{p}^{\prime}=\mathrm{M}_{1} \mathrm{M}_{2} \mathrm{M}_{3} \mathrm{M}_{4} \mathrm{p}$

Left \& Right Multiplication

- Thinking it deeper, we can see:
- $\mathbf{p}^{\prime}=\mathbf{R T p}$ (left-multiplication by R)
- (R-to-L) Apply T to a point p w.r.t. global frame.
- Apply R to a point Tp w.r.t. global frame.
- $\mathbf{p}^{\prime}=\mathbf{T R p}$ (right-multiplication by R)
- (L-to-R) Apply T to a point p w.r.t. local frame.
- Apply R to a point Tp w.r.t local frame.

[Practice] Interpretation of Composite Transformations

- Just start from the Lecture 4 practice code "[Practice] OpenGL Trans. Functions".
- Differences are:

```
def drawFrame():
    glBegin(GL_LINES)
    glColor3ub(255, 0, 0)
    glVertex3fv(np.array([0.,0.,0.]))
    glVertex3fv(np.array([1.,0.,0.]))
    glColor3ub(0, 255, 0)
    glVertex3fv(np.array([0.,0.,0.]))
    glVertex3fv(np.array([0.,1.,0.]))
    glColor3ub(0, 0, 255)
    glVertex3fv(np.array([0.,0.,0]))
    glVertex3fv(np.array([0.,0.,1.]))
    glEnd()
```


[Practice] Interpretation of Composite Transformations

```
def render(camAng):
    glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)
    glEnable(GL_DEPTH_TEST)
    glLoadIdentity()
    glOrtho(-1,1, -1,1, -1,1)
    gluLookAt(.1*np.sin(camAng),.1,.1*np.cos(camAng), 0,0,0, 0,1,0)
    # draw global frame
    drawFrame()
    # 1) p'=TRp
    glTranslatef(.4, .0, 0)
    drawFrame() # frame defined by T
    glRotatef(60, 0, 0, 1)
    drawFrame() # frame defined by TR
    # # 2) p'=RTp
    # glRotatef(60, 0, 0, 1)
    # drawFrame() # frame defined by R
    # glTranslatef(.4, .0, 0)
    # drawFrame() # frame defined by RT
    drawTriangle()
```


Quiz \#2

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

Hierarchical Modeling

Hierarchical Modeling

- Nesting the description of subparts (child parts) into another part (parent part) to form a tree structure
- Each part has its own reference frame (local frame).
- Each part's movement is described w.r.t. its parent's reference frame.

World
System

Another Example - Human Figure

Human Figure - Frames

- Each part has its own reference frame (local frame).

Human Figure - Movement of rhip \& rknee

- Each part's movement is described w.r.t. its parent's reference frame.
- Each part has its own transformation w.r.t. parent part's frame
- "Grouping"

Human Figure - Movement of more joints

- Each part's movement is described w.r.t. its parent's reference frame.
- Each part has its own transformation w.r.t. parent part's frame
- "Grouping"

Articulated Body

- A common type of hierarchical model used in CG is an articulated body
- that has objects that are connected end to end to form multibody jointed chains.
- a.k.a. kinematic chain, linkage (robotics)
- Terminologies
- Joint - a connection between two objects which allows some motion
- Link - a rigid object between joints
- End effector - a free end of a kinematic chain

Articulated Body

- An articulated body is represented by a graph structure.
- A tree structure is most commonly used.
- Each node has its own transformation w.r.t. parent node's frame

Scene Graph

- A graph structure that represents an entire scene.

Rendering Hierarchical Models in OpenGL

- OpenGL provides a useful way of drawing objects in a hierarchical structure.
- \rightarrow Matrix stack

OpenGL Matrix Stack

- A stack for transformation matrices
- Last In First Outs
- You can save the current transformation matrix and then restore it after some objects have
 been drawn
- Useful for traversing hierarchical data structures (i.e. scene graph or tree)

OpenGL Matrix Stack

- glPushMatrix()
- Pushes the current matrix onto the stack.
- glPopMatrix()
- Pops the matrix off the stack.

- The current matrix is the matrix on the top of the stack!
- Keep in mind that the numbers of gIPushMatrix() calls and gIPopMatrix() calls must be the same.

A simple example

Start with identity matrix I

$\operatorname{drawBox}()$: draw a unit box

glPushMatrix()	T	
	T	TS
	I	T
glScale(S) \# sc	ng for drawing	I

Bold text is the current transformation matrix (the one at the top of the matrix stack)

glPushMatrix() glRotate(R) \# to rotate arm

TR
$T R$
T
I

glScale(U) \# scaling for drawing

TRU
TR
T
I

glPopMatrix()	TR
	T
	I
glPopMatrix()	

glPopMatrix() \quad I

[Practice] Matrix Stack

```
import glfw
from OpenGL.GL import *
import numpy as np
from OpenGL.GLU import *
gCamAng = 0
def render(camAng):
    # enable depth test (we'll see
details later)
    glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT)
    glEnable(GL_DEPTH_TEST)
    glLoadIdentity()
    # projection transformation
    glOrtho(-1,1, -1,1, -1,1)
    # viewing transformation
    gluLookAt(.1*np.sin(camAng),.1,
.1*np.cos (camAng), 0,0,0,0,1,0)
    drawFrame()
    t = glfw.get_time()
```

def drawBox():
glBegin(GL_QUADS)
glVertex3fv(np.array ([1,1,0.]))
glVertex3fv(np.array ([-1,1,0.]))
glVertex3fv(np.array ([-1,-1,0.]))
glVertex3fv(np.array([1,-1,0.])) glend()

```
def drawFrame():
```

\# draw coordinate: x in red, y ir green, z in blue
glBegin(GL_LINES)
glColor3ub (255, 0, 0)
glVertex3fv(np.array ([0.,0.,0.]))
glVertex3fv(np.array([1.,0.,0.])) glColor3ub(0, 255, 0)
glVertex3fv(np.array ([0.,0.,0.]))
glVertex3fv(np.array ([0.,1.,0.])) glColor3ub(0, 0, 255)
glVertex3fv(np.array([0.,0.,0]))
glVertex3fv(np.array ([0.,0.,1.]))
glEnd()<
def key_callback(window, key, scancode, action, mods) :
global gCamAng, gComposedM
if action==glfw.PRESS or
action==glfw.REPEAT:
if key==glfw.KEY_1:
gCamAng += np.radians(-10)
elif key==glfw.KEY_3:
gCamAng += np.radians(10)

```
def main():
```

if not glfw.init():

return

window =

```
glfw.create_window(640,640,"Hierarchy",
```


None, None)

if not window:
glfw.terminate()

return

glfw.make_context_current(window)
glfw.set_Key_callb̄ack(window, key_callback) glfw.swap_interval(1)
while not glfw.window_should_close(window): glfw.poll_events() render (gCamAng)
glfw.swap_buffers(window)
glfw.terminate()
if __name__ == "__main__":
main()

Quiz \#3

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2017123456: 4)
- Note that you must submit all quiz answers in the above format to be checked for "attendance".

OpenGL Matrix Stack Types

- Actually, OpenGL maintains four different types of matrix stacks:
- Modelview matrix stack (GL_MODELVIEW)
- Stores model view matrices.
- This is the default type (what we've just used)
- Projection matrix stack (GL_PROJECTION)
- Stores projection matrices
- Texture matrix stack (GL_TEXTURE)
- Stores transformation matrices to adjust texture coordinates. Mostly used to implement texture projection (like an image projected by a beam projector)
- Color matrix stack (GL_COLOR)
- Rarely used. Just ignore it.
- You can switch the current matrix stack type using glMatrixMode()
- e.g. glMatrixMode(GL_PROJECTION) to select the projection matrix stack

OpenGL Matrix Stack Types

- A common guide is something like:

```
/* Projection Transformation */
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(...);
```

/* specify the projection matrix */
/* initialize current value to identity */
/* or glOrtho(...) for orthographic */
/* or glFrustrum(...), also for perspective */

```
/* Viewing And Modelling Transformation */
glMatrixMode(GL_MODELVIEW); /* specify the modelview matrix */
glLoadIdentity(); /* initialize current value to identity */
gluLookAt(...); /* specify the viewing transformation */
glTranslate(...); /* various modelling transformations */
glScale(...);
glRotate(...);
```

- Projection transformation functions (gluPerspective(), glOrtho(), ...) should be called with glMatrixMode(GL_PROJECTION).
- Modeling \& viewing transformation functions (gluLookAt(), glTranslate(), ...) should be called with gIMatrixMode(GL_MODELVIEW).
- Otherwise, you'll get wrong lighting results.

[Practice] With Correct Matrix Stack Types

```
def render(camAng):
    # enable depth test (we'll see
details later)
    glClear(GL_COLOR_BUFFER_BIT |
GL_DEPTH_BUFFER_BIT)
    glEnable(GL_DEPTH_TEST)
    glMatrixMode(GL_PROJECTION)
    glLoadIdentity()
    # projection transformation
    glOrtho(-1,1, -1,1, -1,1)
    glMatrixMode (GL_MODELVIEW)
    glLoadIdentity()
    # viewing transformation
    gluLookAt(.1*np.sin(camAng) ,.1,
.1*np.cos(camAng) , 0,0,0, 0,1,0)
    drawFrame()
    t = glfw.get_time()
```

```
# modeling transformation
```


modeling transformation

blue base transformation

blue base transformation

glPushMatrix()
glPushMatrix()
glTranslatef(np.sin(t), 0, 0)
glTranslatef(np.sin(t), 0, 0)

blue base drawing

blue base drawing

glPushMatrix()
glPushMatrix()
glScalef(.2, .2, .2)
glScalef(.2, .2, .2)
glColor3ub(0, 0, 255)
glColor3ub(0, 0, 255)
drawBox()
drawBox()
glPopMatrix()
glPopMatrix()

red arm transformation

red arm transformation

glPushMatrix()
glPushMatrix()
glRotatef(t*(180/np.pi), 0, 0, 1)
glRotatef(t*(180/np.pi), 0, 0, 1)
glTranslatef(.5, 0,.01)
glTranslatef(.5, 0,.01)

red arm drawing

red arm drawing

glPushMatrix()
glPushMatrix()
glScalef(.5, .1, .1)
glScalef(.5, .1, .1)
glColor3ub(255, 0, 0)
glColor3ub(255, 0, 0)
drawBox()
drawBox()
glPopMatrix()
glPopMatrix()
glPopMatrix()
glPopMatrix()
glPopMatrix()

```
glPopMatrix()
```

- Lab in this week:
- Lab assignment 8
- Next lecture:
-9- Orientation \& Rotation
- Acknowledgement: Some materials come from the lecture slides of
- Prof. Jehee Lee, SNU, http://mrl.snu.ac.kr/courses/CourseGraphics/index 2017spring.html
- Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cgi
- Prof. Kayvon Fatahalian and Keenan Crane, CMU, http://15462.courses.cs.cmu.edu/fall2015/

