
Computer Graphics

8 - Hierarchical Modeling

Yoonsang Lee

Spring 2021

Topics Covered

• Meanings of an Affine Transformation Matrix

• Interpretation of a Series of Transformations

• Hierarchical Modeling

– Concept of Hierarchical Modeling

– OpenGL Matrix Stack

Meanings of an Affine

Transformation Matrix

Meanings of an Affine Transformation

Matrix

• To understand hierarchical modeling, let's first take

a closer look at the meaning of an affine

transformation matrix.

1) A 4x4 Affine Transformation Matrix

transforms a Geometry w.r.t. Global Frame

M =

{global frame}

Translate, rotate, scale, ...

Every vertex position (w.r.t. the global frame)

of the cube is transformed to another position

(w.r.t. the global frame)

Transformed geometry

Review: Affine Frame

• An affine frame in 3D space is defined by three

vectors and one point

– Three vectors for x, y, z axes

– One point for origin

Global Frame

• A global frame is usually represented by

– Standard basis vectors for axes :

– Origin point :

Let’s transform a "global frame"

• Apply M to this "global frame", that is,

– Multiply M with the x, y, z axis vectors and the origin

point of the global frame:

x axis vector y axis vector

z axis vector origin point

2) A 4x4 Affine Transformation Matrix

defines an Affine Frame w.r.t. Global Frame

M =

{frame 1}

(object's local frame)

{global frame}

→ M is the axis vectors and

origin point of a new frame

(represented in the global

frame)

x axis

vector

y axis

vector origin

point

z axis

vector

Examples

The object's local

frame is defined by:

The object's local

frame is defined by:

x axis

vector y axis

vector

origin

point
z axis

vector

of the local frame

represented in the global

frame

x axis

vector
y axis

vector

origin

point

z axis

vector

3) A 4x4 Affine Transformation Matrix transforms

a Point Represented in an Affine Frame to (the

same) Point (but) Represented in Global Frame

{0}

(global frame)

p{1}: Standing at {1},

observing p

p{1} is the position of p

w.r.t local frame

(frame {1})

p{0}=Mp{1}

Standing at {0}, observing p

p{0} is the position of p w.r.t. global frame (frame {0})

M = {1}

p{1} = (1, 1, 0)

p{0}=Mp{1}

3) A 4x4 Affine Transformation Matrix transforms

a Point Represented in an Affine Frame to (the

same) Point (but) Represented in Global Frame

Because...

{0}

(global frame)

Let’s say we

have the same

cube object

and its local

frame

coincident with

the global

frame

M =

Then, it’s a just story of

transforming a geometry!

p{1} = (1, 1, 0)

p{1} = (1, 1, 0)

{1}

Quiz #1

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

All these concepts works even if the starting

frame is not global frame!

{2}

{0}

(global frame)

M1

M2

{1}

{0} to {1}

• 1) M1 transforms a geometry (represented in {0}) w.r.t. {0}

• 2) M1 defines an {1} w.r.t. {0}

• 3) M1 transforms a point represented in {1} to the same point but
represented in {0}

– pa
{0}=M1pa

{1}

{2}

{0}

(global frame)

M1

M2

{1}

pa
{1} = (1, 1, 0)

{1} to {2}

• 1) M2 transforms a geometry (represented in {1}) w.r.t. {1}

• 2) M2 defines an {2} w.r.t. {1}

• 3) M2 transforms a point represented in {2} to the same point but
represented in {1}

– pb
{1}=M2pb

{2}

{2}

{0}

(global frame)

M1

M2

{1}

pb
{2} = (1, 1, 0)

{0} to {2}

• 1) M1M2 transforms a geometry (represented in {0}) w.r.t. {0}

• 2) M1M2 defines an {2} w.r.t. {0}

• 3) M1M2 transforms a point represented in {2} to the same point but
represented in {0}

– pb
{1}=M2pb

{2}, pb
{0}=M1pb

{1}=M1M2pb
{2}

M1M2

{2}

{0}

(global frame)

M1

M2

{1}

pb
{2} = (1, 1, 0)

Interpretation of a Series of

Transformations

Revisit: Order Matters!

• If T and R are matrices representing
affine transformations,

• p' = TRp

– First apply transformation R to point p,
then apply transformation T to transformed
point Rp

• p' = RTp

– First apply transformation T to point p,
then apply transformation R to transformed
point Tp

Interpretation of Composite Transformations #1

• An example transformation:

• This is how we’ve interpreted so far:

– R-to-L: Transforms w.r.t. global frame

p

p'' = T(Rp)p' = Rp

M

Interpretation of Composite Transformations #2

• An example transformation:

• Another way of interpretation:

– L-to-R: Transforms w.r.t. local frame

M = T

M = TR

M = I
p'' = TRp

p

p' = Tp

M

Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p

M1
M2

M3

M4

Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p = (1, 1, 0)

Standing at {4}, observing p

p{4} = p

Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p

Standing at {3}, observing p

p{3} = M4 p

M4

Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p

Standing at {2}, observing p

p{2} = M3 M4 p

M3

M4

Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p

Standing at {1}, observing p

p{1} = M2 M3 M4 p

M3

M4

M2

Interpretation of a Series of Transformations #1

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p

Standing at {0}, observing p

p{0} = M1 M2 M3 M4 p

M3

M4

M2M1

Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)

p

Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)

M1

p'

Standing at {0}, observing p'

p' = M1 p

Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)

M1
M2 p'

Standing at {0}, observing p'

p' = M1 M2 p

Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)

M1
M2

M3

p'

Standing at {0}, observing p'

p' = M1 M2 M3 p

Interpretation of a Series of Transformations #2

• p' = M1M2M3M4 p

{1}

{2}
{3}

{4}

{0}

(global frame)
p`

M1
M2

M3

M4

Standing at {0}, observing p'

p' = M1 M2 M3 M4 p

Left & Right Multiplication

• Thinking it deeper, we can see:

• p' = RTp (left-multiplication by R)

– (R-to-L) Apply T to a point p w.r.t. global frame.

– Apply R to a point Tp w.r.t. global frame.

• p' = TRp (right-multiplication by R)

– (L-to-R) Apply T to a point p w.r.t. local frame.

– Apply R to a point Tp w.r.t local frame.

[Practice] Interpretation of Composite

Transformations

• Just start from the Lecture 4 practice code

"[Practice] OpenGL Trans. Functions".

• Differences are:
def drawFrame():

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([1.,0.,0.]))

glColor3ub(0, 255, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([0.,1.,0.]))

glColor3ub(0, 0, 255)

glVertex3fv(np.array([0.,0.,0]))

glVertex3fv(np.array([0.,0.,1.]))

glEnd()

[Practice] Interpretation of Composite

Transformations

def render(camAng):

glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glLoadIdentity()

glOrtho(-1,1, -1,1, -1,1)

gluLookAt(.1*np.sin(camAng),.1,.1*np.cos(camAng), 0,0,0, 0,1,0)

draw global frame

drawFrame()

1) p'=TRp

glTranslatef(.4, .0, 0)

drawFrame() # frame defined by T

glRotatef(60, 0, 0, 1)

drawFrame() # frame defined by TR

2) p'=RTp

glRotatef(60, 0, 0, 1)

drawFrame() # frame defined by R

glTranslatef(.4, .0, 0)

drawFrame() # frame defined by RT

drawTriangle()

Quiz #2

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

Hierarchical Modeling

Hierarchical Modeling

• Nesting the description of subparts (child parts) into another part
(parent part) to form a tree structure

• Each part has its own reference frame (local frame).

• Each part's movement is described w.r.t. its parent's reference
frame.

Another Example - Human Figure

Hips

Spine

Head RightArm LeftArm

RightForeArm

RightHand

LeftForeArm

LeftHand

RightUpLeg

RightLeg

RightFoot

LeftUpLeg

LeftLeg

LeftFoot

Human Figure - Frames

• Each part has its own reference frame (local

frame).

Human Figure - Movement of rhip & rknee

• Each part's movement is described w.r.t. its parent's

reference frame.

– Each part has its own transformation w.r.t. parent part's frame

– "Grouping"

https://youtu.be/Q7lhvMkCSCg https://youtu.be/Q5R8WGUwpFU

https://youtu.be/Q7lhvMkCSCg
https://youtu.be/Q5R8WGUwpFU

Human Figure - Movement of more joints

• Each part's movement is described w.r.t. its parent's

reference frame.

– Each part has its own transformation w.r.t. parent part's frame

– "Grouping"

https://youtu.be/9dz8bvVK9zc https://youtu.be/PEhyWI8LGBY

https://youtu.be/9dz8bvVK9zc
https://youtu.be/PEhyWI8LGBY

Articulated Body

• A common type of hierarchical
model used in CG is an articulated
body

– that has objects that are connected end
to end to form multibody jointed chains.

– a.k.a. kinematic chain, linkage (robotics)

• Terminologies

– Joint - a connection between two objects
which allows some motion

– Link - a rigid object between joints

– End effector - a free end of a kinematic
chain

Articulated Body

• An articulated body is represented by a graph structure.

– A tree structure is most commonly used.

• Each node has its own transformation w.r.t. parent

node’s frame

Hips

Spine

Head RightArm LeftArm

RightForeArm

RightHand

LeftForeArm

LeftHand

RightUpLeg

RightLeg

RightFoot

LeftUpLeg

LeftLeg

LeftFoot

Scene Graph

• A graph structure that represents an entire scene.

Rendering Hierarchical Models in OpenGL

• OpenGL provides a useful way of drawing objects

in a hierarchical structure.

• → Matrix stack

OpenGL Matrix Stack

• A stack for transformation matrices

– Last In First Outs

• You can save the current
transformation matrix and then
restore it after some objects have
been drawn

• Useful for traversing hierarchical
data structures (i.e. scene graph or
tree)

OpenGL Matrix Stack

• glPushMatrix()

– Pushes the current matrix onto the stack.

• glPopMatrix()

– Pops the matrix off the stack.

• The current matrix is the matrix on the top of the
stack!

• Keep in mind that the numbers of glPushMatrix()
calls and glPopMatrix() calls must be the same.

A simple

example

Start with identity matrix

glPushMatrix()

glTranslate(T) # to translate base

glPushMatrix()

glScale(S) # scaling for drawing

drawBox()

glPopMatrix()

glPushMatrix()

glRotate(R) # to rotate arm

glPushMatrix()

glScale(U) # scaling for drawing

drawBox()

glPopMatrix()

glPopMatrix()

glPopMatrix()

I

Bold text is the current

transformation matrix

(the one at the top of the

matrix stack)

I

I T

I

T

T

I
TS

T

I

T

I
T

T

I
TR

T

I

TR

TR

T

I

TRU

TR

T

I

TR

T

I T

I

I

drawBox(): draw a unit box

?
p'=TSp

p'=TRUp

[Practice] Matrix Stack
modeling transformation

blue base transformation

glPushMatrix()

glTranslatef(np.sin(t), 0, 0)

blue base drawing

glPushMatrix()

glScalef(.2, .2, .2)

glColor3ub(0, 0, 255)

drawBox()

glPopMatrix()

red arm transformation

glPushMatrix()

glRotatef(t*(180/np.pi), 0, 0, 1)

glTranslatef(.5, 0, .01)

red arm drawing

glPushMatrix()

glScalef(.5, .1, .1)

glColor3ub(255, 0, 0)

drawBox()

glPopMatrix()

glPopMatrix()

glPopMatrix()

import glfw

from OpenGL.GL import *

import numpy as np

from OpenGL.GLU import *

gCamAng = 0

def render(camAng):

enable depth test (we'll see

details later)

glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glLoadIdentity()

projection transformation

glOrtho(-1,1, -1,1, -1,1)

viewing transformation

gluLookAt(.1*np.sin(camAng),.1,

.1*np.cos(camAng), 0,0,0, 0,1,0)

drawFrame()

t = glfw.get_time()

def drawBox():

glBegin(GL_QUADS)

glVertex3fv(np.array([1,1,0.]))

glVertex3fv(np.array([-1,1,0.]))

glVertex3fv(np.array([-1,-1,0.]))

glVertex3fv(np.array([1,-1,0.]))

glEnd()

def drawFrame():

draw coordinate: x in red, y in

green, z in blue

glBegin(GL_LINES)

glColor3ub(255, 0, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([1.,0.,0.]))

glColor3ub(0, 255, 0)

glVertex3fv(np.array([0.,0.,0.]))

glVertex3fv(np.array([0.,1.,0.]))

glColor3ub(0, 0, 255)

glVertex3fv(np.array([0.,0.,0]))

glVertex3fv(np.array([0.,0.,1.]))

glEnd()<

def key_callback(window, key, scancode, action,

mods):

global gCamAng, gComposedM

if action==glfw.PRESS or

action==glfw.REPEAT:

if key==glfw.KEY_1:

gCamAng += np.radians(-10)

elif key==glfw.KEY_3:

gCamAng += np.radians(10)

def main():

if not glfw.init():

return

window =

glfw.create_window(640,640,"Hierarchy",

None,None)

if not window:

glfw.terminate()

return

glfw.make_context_current(window)

glfw.set_key_callback(window, key_callback)

glfw.swap_interval(1)

while not glfw.window_should_close(window):

glfw.poll_events()

render(gCamAng)

glfw.swap_buffers(window)

glfw.terminate()

if __name__ == "__main__":

main()

Quiz #3

• Go to https://www.slido.com/

• Join #cg-ys

• Click “Polls”

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2017123456: 4)

• Note that you must submit all quiz answers in the

above format to be checked for “attendance”.

https://www.slido.com/

OpenGL Matrix Stack Types

• Actually, OpenGL maintains four different types of matrix stacks:

• Modelview matrix stack (GL_MODELVIEW)

– Stores model view matrices.

– This is the default type (what we’ve just used)

• Projection matrix stack (GL_PROJECTION)

– Stores projection matrices

• Texture matrix stack (GL_TEXTURE)

– Stores transformation matrices to adjust texture coordinates. Mostly used to
implement texture projection (like an image projected by a beam projector)

• Color matrix stack (GL_COLOR)

– Rarely used. Just ignore it.

• You can switch the current matrix stack type using glMatrixMode()

– e.g. glMatrixMode(GL_PROJECTION) to select the projection matrix stack

OpenGL Matrix Stack Types

• A common guide

is something like:

• Projection transformation functions (gluPerspective(), glOrtho(), …)
should be called with glMatrixMode(GL_PROJECTION).

• Modeling & viewing transformation functions (gluLookAt(),
glTranslate(), …) should be called with
glMatrixMode(GL_MODELVIEW).

• Otherwise, you’ll get wrong lighting results.

[Practice] With Correct Matrix Stack Types
modeling transformation

blue base transformation

glPushMatrix()

glTranslatef(np.sin(t), 0, 0)

blue base drawing

glPushMatrix()

glScalef(.2, .2, .2)

glColor3ub(0, 0, 255)

drawBox()

glPopMatrix()

red arm transformation

glPushMatrix()

glRotatef(t*(180/np.pi), 0, 0, 1)

glTranslatef(.5, 0, .01)

red arm drawing

glPushMatrix()

glScalef(.5, .1, .1)

glColor3ub(255, 0, 0)

drawBox()

glPopMatrix()

glPopMatrix()

glPopMatrix()

def render(camAng):

enable depth test (we'll see

details later)

glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT)

glEnable(GL_DEPTH_TEST)

glMatrixMode(GL_PROJECTION)

glLoadIdentity()

projection transformation

glOrtho(-1,1, -1,1, -1,1)

glMatrixMode(GL_MODELVIEW)

glLoadIdentity()

viewing transformation

gluLookAt(.1*np.sin(camAng),.1,

.1*np.cos(camAng), 0,0,0, 0,1,0)

drawFrame()

t = glfw.get_time()

Next Time

• Lab in this week:

– Lab assignment 8

• Next lecture:

– 9 - Orientation & Rotation

• Acknowledgement: Some materials come from the lecture slides of

– Prof. Jehee Lee, SNU, http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.html

– Prof. Taesoo Kwon, Hanyang Univ., http://calab.hanyang.ac.kr/cgi-bin/cg.cgi

– Prof. Kayvon Fatahalian and Keenan Crane, CMU, http://15462.courses.cs.cmu.edu/fall2015/

http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.html
http://calab.hanyang.ac.kr/cgi-bin/cg.cgi
http://15462.courses.cs.cmu.edu/fall2015/

