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Figure 1: Our data-driven controller allows the physically-simulated biped character to reproduce challenging motor skills captured in motion
data.

Abstract

We present a dynamic controller to physically simulate under-
actuated three-dimensional full-body biped locomotion. Our data-
driven controller takes motion capture reference data to reproduce
realistic human locomotion through realtime physically based sim-
ulation. The key idea is modulating the reference trajectory con-
tinuously and seamlessly such that even a simple dynamic tracking
controller can follow the reference trajectory while maintaining its
balance. In our framework, biped control can be facilitated by a
large array of existing data-driven animation techniques because
our controller can take a stream of reference data generated on-the-
fly at runtime. We demonstrate the effectiveness of our approach
through examples that allow bipeds to turn, spin, and walk while
steering its direction interactively.

CR Categories: I.3.7 [Three-Dimensional Graphics and Realism]:
Animation

Keywords: Character Animation, Bipedal Locomotion, Physi-
cally Based Animation, Motion Capture, Data-Driven Control

1 Introduction

Physically simulating under-actuated biped locomotion has been a
notorious challenge in computer graphics for two decades. Most of
early biped controllers were either manually designed and hand-
tuned or relying on optimization with energy-minimizing objec-
tives. Though some of those controllers are very robust, they tend
to result in stereotyped gaits often looking robotic and lifeless.
SIMBICON is an exemplar of manually-crafted biped controllers,

which is simple, easy-to-implement, and remarkably robust [Yin
et al. 2007]. Its robustness allowed it to be employed in further
challenges such as controller adaptation [Yin et al. 2008], com-
position [Coros et al. 2009] and stepping planning [Coros et al.
2008]. However, it is also true that SIMBICON generates stereo-
typed, marching-like gaits.

Recently, motion capture data were employed to achieve natu-
ral and realistic locomotion from physically based controllers.
Reference-tracking controllers pose yet other challenges such as
collecting physically-feasible training data and developing robust
feedback control algorithms for the tracking of reference trajecto-
ries and the maintenance of balance.

Our goal is to build full-body, three-dimensional locomotion con-
trollers those are as simple and robust as SIMBICON, and still can
faithfully reproduce natural and realistic locomotion guided by ref-
erence motion capture data. Our data-driven controllers can gen-
erate a variety of locomotor behaviors, such as turning and spin-
ning. The key challenge of our approach is modulating a continu-
ous stream of reference data in a seamless way while synchronizing
with forward dynamic simulation. Reference-tracking controllers
often fail when the swing foot lands on the ground earlier/later than
the reference data indicates. Because the ground reaction force is
the only source of control to balance under-actuated bipeds, unex-
pected changes in ground contacts could easily drive the controllers
to unrecoverable failure states. In this paper, we show that care-
fully synchronizing the reference trajectory and the simulated biped
at contact changes in a feedback loop allows us to achieve both the
robustness of feedback controllers and the quality of motion capture
data simultaneously.

The biggest advantage of our approach is that physically based con-
trol can be facilitated by a large array of existing data-driven ani-
mation techniques. Our biped controllers are equipped with a data-
driven animation engine at the front end. The data-driven engine
generates a sequence of movement patterns by editing [Lee and
Shin 1999; Kim et al. 2009], blending [Rose et al. 1998], retarget-
ting [Gleicher 1998], and composing [Lee et al. 2002; Kovar et al.
2002] motion fragments in the database. In this framework, the
role of dynamic controllers can be greatly simplified, that is, track-
ing reference trajectories. We will demonstrate the effectiveness of
our approach through examples that allow bipeds to turn, spin, and
walk while steering its direction interactively.



2 Related Work

Biped controllers have extensively been explored in computer
graphics and robotics. Hodgins and her colleagues presented
manually designed biped controllers for highly-dynamic athletic
motor skills, such as running, jumping, and bicycling [Hodgins
et al. 1995]. Their controllers were equipped with finite state ma-
chines for phase transition control and a feedback balancing mech-
anism based on step placements. van de Panne and his colleagues
have extensively studied the design of biped and quadruped con-
trollers. Most notably among them, SIMBICON is a robust, three-
dimensional walking controller employing a series of key-poses to
shape a reference trajectory and a step-based feedback loop to fol-
low the reference trajectory [Yin et al. 2007]. Robust walking con-
trollers can also be acquired by approximating bipeds with simpli-
fied inverted pendulums, which allow a guaranteed balancing strat-
egy in a closed-form solution [Kim et al. 2007; Tsai et al. 2009].
Those walking controllers tend to raise their swing feet higher and
keep them in the air longer than natural human walking. Their ro-
bustness partly comes from the tendency of extended swing phases,
which allows more flexibility in step placements for balancing.

Optimization has served as a key methodology in biped controller
design. Hodgins and Pollard [1997] adapted existing controllers
to new characters of different scales by searching control param-
eters via simulated annealing. This type of optimization is a very
challenging problem because each controller has a lot of parame-
ters to tune and the objectives are highly non-linear. The continu-
ation method employed by Yin et al. [2008] addressed a difficult
controller-adaptation problem by solving a progressive sequence
of problems that trace a path from a solved problem to the tar-
get unsolved problem. Wang et al. [2009] optimized SIMBICON
controllers to allow more human-like gaits using biomechanically-
motivated objective functions. Control policy searching tech-
niques have also been used to learn walking controllers of physical
robots [Morimoto et al. 2003; Tedrake et al. 2004]. It should be
noted that our research goal is different than trajectory optimiza-
tion [Liu and Popović 2002; Fang and Pollard 2003; Safonova et al.
2004; Wampler and Popović 2009], which attempts to find a spe-
cific trajectory of motion minimizing energy consumption subject
to user constraints.

Once a collection of robust controllers are acquired, high-level
control over biped behaviors is desired. Faloutsos and van de
Panne [2001] discussed the precondition and postcondition of in-
dividual controllers to make transition between controllers. Inte-
grated controllers equipped with various motor skills have been em-
ployed to clear stepping stones [Coros et al. 2008] and steer through
obstacles [Coros et al. 2009]. da Silva et al. [2009] studied a combi-
nation of controllers to create inbetween controllers and coordinate
the operation of multiple controllers.

Several biped controllers have been supplemented with the realism
of motion capture data. To circumvent the difficulty of balance con-
trol, some controllers allow only the upper-body to be driven by mo-
tion capture data while the lower-body is either fixed or controlled
by a conventional balance controller [Zordan and Hodgins 2002;
Nakaoka et al. 2003]. Data-driven control of two-dimensional
biped locomotion was first addressed by Sok et al. [2007]. They
pointed out that motion capture data are physically inaccurate and
rectified motion capture data to make them physically plausible us-
ing spacetime optimization. They also demonstrated that even very
simple regression and tracking methods can generate stable biped
walking, running and jumping when they are combined with phys-
ically plausible reference data. da Silva et al. [2008b] developed
three-dimensional walking controllers that exhibit improved robust-
ness and stability. Their controller employed short-horizon tracking
and quadratic programming to maintain biped balance. This idea
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Figure 2: System Overview

has further been improved with LQR (Linear Quadratic Regula-
tor) balance control, which precomputes optimal balancing strate-
gies using a simplified 3-link character model [2008a]. Muico et
al. [2009] employed an even more sophisticated model, NQR (Non-
linear Quadratic Regulator), to track the full DOFs of a human body
model. Their controllers coped with non-penetration constraints
by incorporating an NQR formulation into a linear complementary
problem.

In robotics, biped humanoid robots are often driven by oscillatory
movement pattern generators described by differential equations.
Several researchers have explored a strategy to synchronize refer-
ence movement patterns and an actual humanoid via phase reset-
ting [Nakanishi et al. 2004; Nakanishi et al. 2006]. Phase resetting
is conceptually similar to our synchronization method, though our
controller can deal with realistic motion capture references that ne-
cessitate coordinated movements of many actuated joints (upto 42
degrees of freedom in our experiments).

Comparing to previous data-driven controllers, our controller re-
quires neither any precomputed control model (such as regres-
sion models, LQR, or NQR) nor non-linear optimization (such as
quadratic programming). The model-free approach allows our con-
trollers to take any reference trajectory generated on-the-fly at run-
time. It also allows us to decouple the data-driven animation en-
gine and physically based controllers. Therefore, any existing data-
driven techniques can be used to actuate and drive physically sim-
ulated bipeds without any restriction or precomputation. Our con-
troller does not require the derivative evaluation of equations of mo-
tion or a non-linear optimization solver. This makes our controller
easy-to-implement and computationally efficient.

3 System Overview

Our interactive biped control system consists of three main com-
ponents (see Figure 2): Animation engine, data-driven control, and
dynamic tracking control. The animation engine provides the user
with high-level control over the behavior of the simulated biped
through interactive user interfaces and generates a stream of move-
ment patterns by searching through the motion database. The
stream of patterns are fed into the reference motion queue and then
consumed by tracking control that drives the biped through forward
dynamic simulation. The key challenge is with data-driven con-
trol, which continuously modulates the reference trajectory such
that even a simple tracking controller can reproduce the reference
motion. The role of data-driven control is twofold: Maintenance of



Mass

(kg) (m) Lx Ly Lz

head 3 0.180 0.012 0.012 0.008

upper arm 2 0.238 0.011 0.011 0.003

lower arm 1 0.200 0.004 0.004 0.001

torso 8 0.230 0.052 0.068 0.049

hip 6 0.180 0.025 0.047 0.040

thigh 5 0.400 0.072 0.072 0.010

shin 5 0.380 0.065 0.065 0.011

foot 2 0.225 0.010 0.010 0.003

2Inertia (Kg m  )Length

Figure 3: The biped dynamic model has 13 body parts connected
by 12 ball-and-socket joints.

balance and synchronization between reference data and the actual
simulation.

Motion Database. Our dynamic biped model has 13 rigid body
parts (head, torso, pelvis, upper arms, lower arms, thighs, shins,
and feet) and 12 actuated ball-and-socket joints connecting the body
parts (see Figure 3). The total degrees of freedom of the model is 42
including the six degrees of freedom at the unactuated root (pelvis).
We annotated motion capture data with ground contact information
in a similar way as done by Lee et al. [2002] and then segmented
motion data into fragments where ground contact changes. Each
fragment contains a half-cycle of locomotion starting from left foot
landing to right foot landing or vice versa. Extended double stance
phases (e.g., stop to stand still) and flight phases (e.g., broad jump)
are also segmented into fragments where double stance/flight be-
gins or terminates. Motion fragments thus obtained are maintained
in a directed graph to allow transitioning between them [Lee et al.
2002].

Tracking Control. Tracking control attempts to follow a refer-
ence motion trajectory. Our system used a controller similar to
Macchietto et al. [2009]. The desired acceleration at any time in-
stance is computed:

θ̈desired = kt(θr − θ) + kv(θ̇r − θ̇) + θ̈r, (1)

where θr , θ̇r and θ̈r are the joint angles, joint velocities, and joint
accelerations, respectively, estimated from the reference motion
data by finite differences. Joint torques are computed from the de-
sired joint accelerations using inverse dynamics and then fed into a
forward dynamics simulator to actuate the biped. We use a penalty
method to compute ground reaction force. This simple tracking
control is easy-to-implement and stable with small integration time
steps. Note that tracking control operates at the rate of 900 Hz
for stability, while data-driven control operates at 30 Hz to match
the requirement of visual fidelity (see Figure 2). We used Virtual
Physics to solve inverse dynamics and forward dynamics simula-
tion [Kim 2009]. Because our bipeds are under-actuated, we are
unable to solve for joint torques those produce desired accelera-
tions at full degrees of freedom via inverse dynamics. The inverse
dynamics of an under-actuated system takes the desired accelera-
tions at actuated joints and external forces (including ground reac-
tion force) as input, and produces output torques at actuated joints.
The accelerations at unactuated degrees of freedom (in our case, lin-
ear and angular accelerations of the root) are passively determined
as a result of applying the output torques to actuated joints. There-
fore, the unactuated root cannot be directly manipulated through
explicit forces/torques, but can only be maneuvered indirectly via
harmonious coordination of actuated joints.

4 Data-Driven Control

Controlling a dynamic biped model to imitate biological locomo-
tion captured from a live actor is difficult because of many reasons.
At first, the dynamic model has fewer degrees of freedom than the
actual human skeleton and idealized ball-and-socket joints are dif-
ferent than human joints. The physical properties, such as mass and
inertia, are roughly estimated based on statistical data. Motion cap-
ture data include measurement errors in estimating skeletal move-
ments from markers placed on deforming skin. On the other hand,
forward dynamics simulation is sensitive to input conditions and
external perturbation. Tracking control of under-actuated bipeds is
particularly susceptible to even small deviation in ground contact
from the reference trajectory.

Our data-driven controller modulates the reference motion capture
data actively and continuously at runtime to compensate for the dis-
crepancy between the desired reference motion and the actual simu-
lation of a biped. Specifically, data-driven control modulates lower
limbs to actively maintain balance. It also adjusts the timing of
motion to synchronize the reference data to the simulation.

4.1 Balancing

Human balance behavior heavily relies on the hip joints and the
stance ankle. As pointed out by Wang et al. [2009], the knees are
often near-passive throughout the cycle of natural human walking.
We apply SIMBICON-style feedback control laws to the hips and
stance ankle.

Consider the reference motion at top of the queue at runtime. Let
M(t) = (v0(t),q1(t),q2(t), · · · ,qn(t)) be a fragment of mo-
tion, where 0 ≤ t ≤ T is the index of motion frames, v0 ∈ R

3 and
q1 ∈ S

3 are the position and orientation, respectively, of the root,
and qk ∈ S

3 for k > 1 is the relative orientation of joint k with
respective to its parent link.

Motion frames in the queue should be continuously modulated be-
fore consumed by tracking control to compensate for possible loss
of balance. Let M(tc) be the currently referencing motion frame by
the tracking controller and P be the current configuration (pose) of
the biped in the simulation. The current pose is supposed to match
M(tc) in the reference motion, but may deviate in general. For this
reason, simply feeding its subsequent frame M(tc + 1) to tracking
control would not guarantee stable and precise simulation. Instead,
we compute an error-compensating, balance-recovering target pose

P̂ at every time instance by applying feedback control laws. It
guides tracking control to better follow the reference motion. A
continuous stream of target poses computed based on motion cap-
ture reference data allows our tracking control to be much less stiff
than SIMBICON, which uses PD servos with sparse key poses [Yin
et al. 2007].

The target pose P̂ is constructed in three steps starting from the
corresponding reference frame M(tc+1). We first decide its stance
hip angle with respect to its pelvis orientation and then elaborate on
the swing hip and the stance ankle to yield balance feedback. The
swing leg is further adjusted for better tracking.

Feedback on Stance Hip. For an under-actuated system, we do
not have a direct control over its root (pelvis), but it can be con-
trolled indirectly by modulating the stance leg. Let qpelvis ∈ S

3

and qhip ∈ S
3 be the orientation of the pelvis and the stance hip

with respect to a global, reference coordinate system. We take
pelvis orientation qpelvis from reference frame M(tc + 1) and hip
orientation qhip from the current configuration P to compute the

desired hip joint angle qd = q−1
pelvisqhip. The feedback rule to
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Figure 4: Feedback parameters d and v in the sagittal plane. The
center of the pelvis is used as a proxy of the center of mass.

achieve the desired stance hip angle is:

qstance hip = qsth

`
q
−1
sthqd

´c0·sstance(t), (2)

where qstance hip is the stance hip angle of the target pose, qsth

is the angle of the stance hip at M(tc + 1), and c0 is a feedback
gain. Transition function sstance(t) defined over the stance interval
allows this feedback control to engage gradually not to make abrupt
thrust at the beginning of the stance phase.

Feedback on Swing Hip and Stance Ankle. Our feedback rule
on the swing hip is similar to the one of SIMBICON, which moni-
tors the location and velocity of the center of mass (COM) to mod-
ulate the swing hip angle. We instead use the relative location and
velocity comparing to the reference data. We will explain the feed-
back rule in two-dimensional sagittal plane for simplicity and clar-
ity. The same procedure should be applied in the coronal plane as
well for lateral balancing. Let v and d be the horizontal velocity
and location, respectively, of the COM with respect to the stance
foot position (see Figure 4). Let vd and dd are their desired values
estimated from the reference data. Then, the feedback rule is:

θswing hip = θswh +
`
c1(vd − v) + c2(dd − d)

´
sswing(t), (3)

where θswing hip is the swing hip angle of the target pose, θswh is
the angle of the swing hip at M(tc + 1), c1 and c2 are feedback
gains, and transition function sswing(t) is defined over the swing
phase. Similarly, the feedback rule on the stance ankle is defined:

θstance ankle = θsta +
`
c3(vd − v) + c4(dd − d)

´
sstance(t), (4)

where θstance ankle is the stance ankle angle of the target pose, θsta

is the angle of the stance ankle at M(tc + 1), and c3 and c4 are
feedback gains. Intuitively speaking, if the current speed is faster
than the reference suggests (vd < v) or the biped leans forwards
(dd < d), the biped slows down by extending the stance ankle and
landing the swing foot forward farther than the reference trajectory
indicates. Conversely, if the current speed is slower than the refer-
ence (vd > v) or the biped leans backwards (dd > d), the biped
accelerates by bending the stance ankle and landing the swing foot
closer.

The sagittal and coronal planes change rapidly for turning and spin-
ning motions and sometimes this can be a source of instability. We
used a vertical plane containing a moving direction vector and its
perpendicular vertical plane, instead of sagittal and coronal planes,
to deal with rapid rotational movements.

Feedback for Swing Foot Height. The simulated biped easily
loses its balance when its swing foot mistakenly touches the ground.

Our controllers modulates the height of the swing foot from the
ground surface with a feedback rule:

hswing height = hswh +
`
c5(hd − h) + c6(ḣd − ḣ)

´
sswing(t),

(5)

where hswing height is the target height of the swing foot, h and ḣ

are the current height and its time derivative, hd and ḣd are their
desired values estimated from the reference data, and c5 and c6

are feedback gains. Given the target height, we used an inverse
kinematics solver developed by Lee and Shin [1999] to adjust the
target pose.

4.2 Synchronization

Let M(t) be a motion fragment at top of the queue and M′(t) be
its subsequent motion fragment awaiting in the queue. Since we
segmented motion data at contact changes, there must be a contact
change between the two motion fragments. Typically, for locomo-
tion, a swing foot of M lands on the ground at the beginning of
M′.

In the tracking simulation loop, the swing foot may touch the
ground earlier or later than the reference motion indicates even with
feedback control. Assume that the tracking controller is currently
referencing M(tc) when the swing foot is landing. The target pose

P̂ computed based on feedback rules may deviate from the refer-
ence frame M(tc) in general.

If the actual contact was earlier, the remaining frames of M is de-
queued and the next fragment M′ shifts to the top of the queue.
At that moment, M′ should be warped to make a smooth transition
(see Appendix A for details on mathematical notation).

M(t)←M
′(t)⊗

`
P̂⊘M

′(0)
´r(t)

for ∀t, (6)

where P̂⊘M′(0) is the displacement between the two poses. r(t)
is a smooth transition function, which is one at the beginning of
M′, zero at the end, and its derivatives are zero at both ends (see
Appendix B). Intuitively speaking, the displacement at the begin-
ning of M′ propagates gradually to its subsequent frames to make
seamless transition. The transitioning period should be as long as
possible to achieve smoothest visual transition. One exception is
the stance foot, which supports the entire body mass. Even a small
deviation at the stance foot may influence the fullbody balance sig-
nificantly. Transitioning of the stance ankle is handled differently
than other joints. At first, a quicker transition of the stance foot usu-
ally better stabilizes the next stride. In our experiments, transition
function r(t) was set to vary from one to zero over the duration of
M′ (usually, a half cycle of locomotion) excepting for the stance
ankle, which completes its transition in 1/5 of the half-cycle du-
ration. Secondly, the angle of the stance foot with respect to the
ground surface is more important than tracking the joint angles.
Therefore, the target angle of the stance ankle at the end of the tran-
sitioning is set such that the angle between the stance foot and the
ground surface matches the reference data.

If the actual landing was later than the reference indicates, there are
no reference data to follow until the swing foot touches the ground
and the next reference motion engages. We expands the current
reference motion by integrating joint angles with constant velocities
at the end of M excepting for the stance leg. Similarly expanding
the stance-leg motion tends to make it push off the ground with too
much thrust. Therefore, we leave the hip, knee and ankle of the
stance leg fixed while the reference motion is expanded.



c1_sag c1_cor c2_sag(+) c2_sag(-) c2_cor c3_sag c3_cor

Walking

Walk Forward Normal 0.05 0.2 0.2 0.05 0.2 0.1 0.1

Walk Forward Slow 0.05 0.25 0.5 0.05 0.2 0.1 0.1

Walk Forward Fast 0.05 0.3 0.5 0.05 0.2 0.1 0.1

Walk Forward Gentle 0 0.3 1.2 0.05 0.2 0.1 0.1

Walk Wide Swing 0.05 0.2 0.3 0.05 0.2 0.1 0.1

Walk Brisk 0 0.3 0.2 0 0.2 0.1 0.1

Walk March 0 0.3 0.2 0.05 0.2 0.1 0.1

Walk Backward 0.1 0.3 1 0 0.3 0.3 0.3

Spinning, Turning

Walk Left 45 Degree 0.1 0.4 0.7 0.05 0.2 0.1 0.1

Walk Left 90 Degree 0 0.3 0 0 0.2 0.1 0.1

U-turn 0.05 0.3 1.2 0.05 0.2 0.1 0.1

Spin 0.2 0.2 0.7 0.05 0.2 0.1 0.1

Robustness to Pushes

Walk Forward Normal 0.05 0.25 1.7 0.1 0.3 0.1 0.1

Interactive Control

Stop to Walk 0.1 0.25 1 0.05 0.3 0.1 0.1

Normal Walk 0 0.3 1.8 0 0.2 0.1 0.1

Left / Right Turn 90 0.1 0.3 1.5 0.05 0.4 0.1 0.1

Left / Right Turn 135 0 0.3 2 0.05 0.4 0.1 0.1

Left / Right Turn 180 0.1 0.3 2 0.05 0.3 0.1 0.1

Fast Walk 0 0.25 1 0 0.3 0.1 0.1

Walk Style1 0.1 0.4 0.5 0.05 0.4 0.1 0.1

Walk Style2 0.1 0.3 0.5 0.1 0.3 0.1 0.1

Figure 5: Feedback gains are different for sagittal and coronal
planes. “+” is for vd−v > 0 or dd−d > 0 and “-” is for vd−v < 0
or dd − d < 0. c0 = 1, c4 = 0.1, c5 = 0.5, and c6 = 0.02 for all
examples.

5 Results

All motion data in our experiments were originally captured us-
ing a Vicon optical motion capture system at the rate of 120
frames/second and then down-sampled to 30 frames/second. Mo-
tion data include walking in a variety of different speeds, turning
angles and styles. We also captured sharp U-turning and spinning.
We lifted up the swing foot trajectory slightly in the motion data
of turning, spinning and interactive control examples which have
low step height. We set dynamics and integrator parameters to
achieve robust simulation in a conservative manner while main-
taining the performance of realtime simulation at the rate of 30
frames/second. The ground reaction is modeled as a damped spring.
The ground spring and damping coefficients are ks = 2000N/m
and kd = 2

√
ks = 89.4Ns/m, respectively.

Feedback Parameters. All feedback gains are summarized in Fig-
ure 5. Parameters were manually tuned for each motion data. Pa-
rameter tuning was not formidable because each parameter has an
intuitive meaning and many of gains are simply constant for all mo-
tion data. Most of motion data can be stably reproduced for a wide
range of parameter choices excepting for several very challenging
examples, such as spinning, which requires careful parameter tun-
ing (see the accompanied video). Most of our controllers generated
stable cycles and became resilient to mild pushes without position
feedbacks, that is, c2 = c4 = 0. Without external perturbation,
the velocity feedback alone allows the reference trajectory to be
followed closely and thus the position feedback has nothing to do
with balancing. However, external pushes would make the simula-
tion to deviate from the reference trajectory and the position feed-
back would play an important role. Therefore, we first tune c1 and
c3 to achieve stable cycles without any external perturbation and
then tune c2 and c4 later in the presence of random pushes at the
center of mass.

Locomotion Control. Our biped character is able to reproduce
various gaits of human walking (see Figure 6). Each motion clip
recorded a subject standing still, starting to walk, taking 6 to 8 steps,

Figure 6: Data-driven biped simulation from motion capture data
including (top to bottom) WalkForwardNormal, WalkBrisk, Walk-
March, WalkBackward, U-turn, and Spin.

and then stopping. Representing motion data as a motion graph al-
lows us to produce an arbitrarily long sequence of locomotion by
splicing walking steps. Our biped can track an arbitrary combi-
nation of locomotion steps including slow/fast walking, turning of
different angles, and different gaits.

Effects of Individual Components. Our controller consists of sev-
eral components for balancing, tracking, and synchronization. Dis-
abling any of these components would result in either falling over
in several steps or the degradation in motion quality. We evaluated
the effect of each component by disabling each one at a time for a
variety of walking data:

• Disabling synchronization always leads to falling over in 3 to
6 steps.

• Disabling the feedback on a stance hip makes the torso to lean
and eventually leads to falling over in 2 to 4 steps.

• Disabling the feedback on a swing hip makes the character to
lean to one side and eventually leads to falling over in 6 to 10
steps.

• Disabling the feedback on a stance ankle or swing foot height
managed to avoid falling over for some gaits, but the motion
looks unnatural.

Robustness under Various Conditions. We tested our walking
controller on varied simulation conditions to evaluate its robustness
(see Figure 7). Our controller generated stable cycles of walking
for up to 15 Kg of extra weight on one leg, 50% longer legs, 50%
shorter legs, one leg 3% shorter than the other, up and down slopes
up to 6 and 4 degrees respectively, 60% to 1200% variations of
friction coefficients. These numbers were acquired from the same
reference data and the same parameters with those used in walking
examples. The limits can be significantly improved if we adapt the



Figure 7: Our walking controller has been tested under varied sim-
ulation conditions. (left to right, top to bottom) Original character,
extra weight on the leg, longer legs, the left leg shorter than the right
leg, shorter height and the same weight, shorter height and lighter
weight

reference data kinematically to the varied conditions [Lee and Shin
1999].

Robustness to Pushes. We quantified the robustness to external
disturbances with push experiments similar to Wang et al. [2009].
The body mass and simulation coefficients were set to match those
of SIMBICON [Yin et al. 2007] as much as we could. However, we
were unable to conduct the comparison test under the exactly same
condition. Once the biped entered into stable cycles, we applied
forces of 0.4 seconds duration to the center of mass of torso once
every 4 seconds for 40 seconds. The controller passes the push-
resilience test if the biped is still walking stably after 40 seconds.
For Walk Forward Normal data, our controller withstands pushes
up to 160N, 130N, 80N and 105N from front, rear, right and left,
respectively. Because the robustness is influenced by the size and
scale of the body, a type of gaits, walking speed, and many other
factors, direct comparison to the previous results would be difficult.
Roughly speaking, the results indicate that our controller is about
as robust as the controller proposed by Wang et al. [2009] and less
robust than SIMBICON.

Interactive Control. Our model-free approach allows us to blend
a set of motion data on-the-fly and feed inbetween data to the con-
troller. The feedback gains are also interpolated at the same ratio as
motion data. The motion set includes turning in 90, 135, and 180
degrees, straight walking at normal/fast speeds and two different
gaits. Motion blending and transitioning are computed in the data-
driven animation engine and our controller simply tracks a stream
of reference data generated at the animation engine. Our biped
character can steer in arbitrary turning angles, change its speed,
and make transition between different gaits. The user can control
the biped character interactively by specifying walking direction,
speed and a type of gaits through simple user interfaces. Our con-
troller allows the biped to respond to external perturbations, such as
intentional pushes and collision with stacked boxes (see Figure 8).

Figure 8: A interactively-controlled biped navigating through
stacked boxes.

6 Discussion

Biped control requires two essential mechanisms for shaping tra-
jectories and robust balancing/tracking control. Our work is per-
haps emphasizing the importance of trajectory shaping. Motion
capture reference data allowed our controller to generate realistic
human locomotion. Even balance control was achieved in a data-
driven manner by modulating reference trajectories. Presumably,
advanced control methodologies would improve our work in several
directions. Regression-based approaches [Sok et al. 2007] would
allow us to represent natural variations of locomotion in statisti-
cal models, which would cope with variations in environments and
simulation conditions. Advanced optimal control methods, such as
LQR [da Silva et al. 2008a] and NQR [Muico et al. 2009], would al-
low less stiff systems for tracking control. Even with such expected
advantages, we were unable to employ sophisticated control meth-
ods because those methods require all reference data be prepared
for preprocessing. No reference data generated on-the-fly could be
fed into the controller. This restricts the flexibility and versatility
of biped control. Designing robust model-free controllers would
be an important advance in biped control. We can also think of
online model learning that builds a control model incrementally at
runtime.

Our controller is more robust if it sacrifices its motion quality by
maintaining the direction of the stance foot to match the angle of the
ground surface while in contact. It means our controller becomes
less robust with more natural stance phases including heel-strike,
midstance, and toe-off. In our push experiments, a controller with
its stance foot angle fixed with respect to the ground tends to with-
stand stronger pushes by 10N to 20N. A similar observation was
reported by Wang et al. [2009]. The loss of robustness is probably
related to inaccurate modeling of the foot. Since our foot model is
rigid, it usually have a small contact region on which ground reac-
tion forces are applied. This makes the stance foot to wobble in the
simulation. More realistic foot models might improve the robust-
ness of our controller.

Ideally, reference motion data should be physically feasible for best
tracking performance, though motion capture data are in general
physically imprecise. Some of previous approaches [Sok et al.
2007; Muico et al. 2009] preprocessed motion data to make them
physically feasible via spacetime optimization. Spacetime opti-
mization of three-dimensional, full-body motion data is notorious
for its challenging nature of numerical instability and heavy com-
putational burden. We did not employ such optimization in our ex-



periments because our feedback rules worked effectively with our
test data. However, we suspect that optimized reference data would
allow our controller to be more robust and to follow the reference
data more precisely. The optimization of reference data would be
particularly important if motion data need to be warped, blended,
and retargetted.

We have experimented mostly with locomotion data. Controlling
and simulating a wider spectrum of human motions will be an ex-
citing avenue for future research. We anticipate that we will see
compelling biped characters equipped with a variety of motor skills
spanning from low-energy locomotion to highly-dynamic dancing
and athletic skills that build on data-driven control techniques such
as those presented here.
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Appendix A

We represent motion data and motion displacements using mathe-
matical notations of Lee [2008]. Let P = (v0,q1,q2, · · · ,qn) be
the pose of an articulated figure, where v0 ∈ R

3 and q1 ∈ S
3 are

the position and orientation, respectively, of its root segment and
qk ∈ S

3 for k > 1 is the relative orientation of joint k with respec-
tive to its parent. The displacement between two articulated figure
poses can be denoted by an array of linear and angular displacement

vectors D = (u0,u1, · · · ,un) ∈ R
3(n+1). Primitive operations

between poses and displacements are defined:

P1 ⊗P2 = (q1,1v2,0q
−1
1,1 + v1,0,q1,1q2,1, · · · ,q1,nq2,n)

P1 ⊘P2 = (q−1
2,1(v1,0 − v2,0)q

−1
2,1,q

−1
2,1q1,1, · · · ,q−1

2,nq1,n)

D1 ±D2 = (u1,0 ± u2,0, · · · ,u1,n ± u2,n)

α ·D = (αu0, · · · , αun)

gexp(D) =
`
u0, exp(u1), · · · , exp(un)

´

flog(P) =
`
v0, log(q1), · · · , log(qn)

´

P
α = gexp

`
α flog(P)

´
,

where α ∈ R is a scalar value, Pi = (vi,0,qi,1, · · · ,qi,n) and
Di = (ui,0,ui,1, · · · ,ui,n). Intuitively speaking, the “difference”
between two poses yields displacement P1⊘P2. The power (P1⊘
P2)

α scales the displacement linearly by a factor of scalar value α.
“Adding” the scaled displacement to pose P yields another pose
P′ = P⊗ (P1 ⊘P2)

α.

Equations (2)-(6) are of an identical form applied to different math-
ematical objects. Equations (3)-(5) are for scalar values, Equation
(2) is for unit quaternions, and Equation (6) is for biped poses.

Appendix B

Transition s(t) : [a, b] → [0, 1] is a smooth scalar function that
satisfies s(a) = 0, s(b) = 1, and s′(a) = s′(b) = 0. Specifically,

we use a cubic polynomial:

s(t) = −2

„
x− a

b− a

«3

+3

„
x− a

b− a

«2

, if a ≤ x ≤ b

= 0, if x < a

= 1, if x > b.

Backward transition function r(t) : [a, b]→ [0, 1] varies smoothly
from one to zero such that r(a) = 1, r(b) = 0, and r′(a) =
r′(b) = 0.


