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Related Work

e Motion matching

* Deep reinforcement learning

Learned
Motion Matching
[Holden 2017]

Deep Phase
[Starke 2022]

Interactive Character
Path-Following

Using Long-Horizon
Motion Matching
Revised Future Queries
[Lee 2023]

Desired Properties
Matched Properties.
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Motion Recommendation
For Online Character Control
[Cho 2021]
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Learning Time-critical Response
for Interactive Character Control
[Lee 2021]

The user can control the speed of the character's movement
with the speed of drawing.

Walk

reference motion

generated motion from SRB simulation

Adaptive Tracking

of a Single-Rigid-Body Character
in Various Environments

[Kwon 2023]

Motion VAE
[Ling 2020]



Motivation

* Train a policy using deep reinforcement
learning(DRL) to generate character animation.

 Combine motion matching, with continuous state
and action spaces.

* Enable direct generation of motion matching
gueries for long-term tasks, target locations.

Motion
Matching




Our method

e Quickly learned within a short timeframe
* Available with a simple reward design

* A novel reward term and curriculum design to facilitate the learning (when with moving obstacles).
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A quick summary of motion matching [cbc2o16]

* Feature vector x at timestep t includes:

* Character feature (cy)
* Foot positions
* Foot velocities
* Hip(root) velocity
* Future trajectory (t;)
* Of the root node, 1-second length

* Search for the most similar posture frame j*.

¢ ¥ = argminj||3?—xj||2



DRL Formulation with Motion Matching - State

State (s;={c¢, g¢})

%Character feature (c;) Goal (g;)



DRL Formulation with Motion Matching - Action

State (s¢={c¢, 8¢})

Action (a; = t; )
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Future trajectory (t;)




DRL Formulation with Motion Matching — Motion Matching

Search

Motion

Matchin
T v :

Character feature (c;) Future trajectory (t;) The most similar next posture
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Overview of Our Method

State (s;={cs, g¢}) Action (a; = t; )

x.}
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Character feature (c;) Goal (g¢) Future trajectory (t;)

Search
* Every values are represented

with regards to the character
root node’s local frame.

Motion
Matching

The most similar next posture



Plane Environment

Fully Connected
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Character feature (c;) Goal (g;) \ ) Future trajectory (t;)

e Qur plane environment has a bare plane with a sole target position.
* Our policy has two fully connected layers.
* At each training iteration, the policy is updated by rewarding a;

* Reward r; = exp(—||g¢ll,) , the character root’s distance to the goal position.



Training for Plane Environment

* Facilitate learning process by.. Initializes to a random frame.
* [nitializing to a random posture
frame.

* Giving extra bonus rewards
when an episode is “successful”, I 5 $ i j\ 5 %M
and we terminate the episode
right away. ﬁ

Terminates when,
1. The goal is close enough ( ||g¢ll, <0.5 )
2. Orthe episode is long enough (t>=200 )



Experimental Results — Plane Environment

After 30 seconds of training (20K steps) After 150 seconds of training (100K steps)
* Slow, less accurate. * Every episodes are successful.

* Head towards the target.



Experimental Results — Plane Environment

e After then, the policy learns how to reach the
target faster.

» After 1500 seconds of training (1M steps)

Episode Length

15QOsec
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Episode Return
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Extensions for Moving Obstacles Environment

e QObstacles
e 100 random obstacles

* Episode terminates when,
1. Character-obstacle collision

2. Or the episode is long enough
t> 1000




Extensions for Moving Obstacles Environment

» 2 dimensional sensor 0 is given as an additional observation.
* The output action is the future trajectory t;, the same as the Plane Environment.



Extensions for Moving Obstacles Environment
(1) Hit Reward

* A novel reward term

* A penalty on the count of future
trajectory positions in an action
that intersect with any obstacle.

re = exp(—|lg¢ll2) + exp(—hits(a;))

2”1

, if t|k| is inside any obstacle
hit - < o O
fts(ar) k;) 0 else. fm] 7[2]

* Future trajectory positions T



Extensions for Moving Obstacles Environment
(1) Hit Reward
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The action with future trajectory position intersecting with an obstacle gets less rewards.



Extensions for Moving Obstacles Environment
(1) Hit Reward

Policy with hit reward Policy without hit reward
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Extensions for Moving Obstacles Environment

(2) Obstacle Curriculum

Enhances the learning of policies.

Gradually increases
* Goal sample area

* Obstacle speeds

Progress to the next level whenever

* Over 40% of episodes collected in
this iteration are “successful”.

- Obstacle speed Sample area of g;

LevelO x 0 5m x5m
Levell x0.1 5.5m x 5.5m
Level2 x 0.2 6m x 6m
Level3 x0.3 6.5m x 6.5m
Level4 x0.4 7mx7m
Level5 x 0.5 7.5m x7.5m
Level6 x 0.6 8m x 8m
Level7 x 0.7 8.5m x 8.5m
Level8 x 0.8 9m x 9m
Level9 x 0.9 9.5m x9.5m
Levell0 x1.0 10m x 10m
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Extensions for Moving Obstacles Environment
(2) Obstacle Curriculum

e Policy in environments of different levels.
* The policy is exposed to more difficult task levels while the learning proceeds.



Experimental Results — Moving Obstacles Environment

e Qurs
e Without hit reward

* Without obstacle curriculum
5000

E o 0.75
5 g
= 500 i 20 * Ours converges to the highest success ratio.
e )
2 §0-25- * Hit reward makes our method stable.
o n

of .o 2 0,00 L wemese, ¢ Obstacle curriculum facilitates the learning.

Steps Steps
(a) (b)

* Episode Return: Mean of episode returns per iteration.
* Success Ratio: The rate of episodes collected in this iteration that successfully reached the target location.



een fast-forwarded.
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https://youtu.be/kR47MrPhJGk
https://cgrhyu.github.io/publications/2024-matching-drl.html
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