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Motivation

= Existing motion capture datasets =2 we can generate a wide variety of realistic human motions.

= But what if motion capture is difficult or infeasible — such as for animals or imaginary creatures?

[Park et al. 2025]
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FreeMusco

%

\

= We propose a motion-free framework that learns a latent space of morphology-adaptive locomotion

behaviors in various musculoskeletal characters.

= The model is trained without motion data, based only on morphology and biomechanics. It generalizes to

non-human characters (e.g., Ostrich) and synthetic characters (e.g., Chimanoid).

Humanoid Ostrich = Chimanoid
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FreeMusco

= We propose a motion-free framework that learns a latent space of morphology-adaptive locomotion

behaviors in various musculoskeletal characters.

= The model is trained without motion data, based only on morphology and biomechanics. It generalizes to

non-human characters (e.g., Ostrich) and synthetic characters (e.g., Chimanoid).

= The learned latent space enables high-level control, like goal navigation and path following.

Humanoid Ostrich ~ Chimanoid
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Prior Works
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Prior Methods: Motion-Driven Character Control

[Lee et al. 2010]

Motion Capture Reference
Walk Forward Slow

[Yao et al. 2022]

Simul

Simulation

= Advance of motion-driven character control:

Humanoid: Roll

ation

[Peng et al. 2018]

[Tessler et al. 2024]

Mocap-based feedback control > DRL, imitation learning and generative models.

» Pros: Imitating diverse behaviors / Cons: constrained by the distribution of demonstration data.
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Prior Methods: Motion-Free Character Control

*

[Hodgins et al. 1995] Atlanta in Motion [Yin et al. 2007]

[Yu et al. 2018]

- wE --‘ (%
2 3 [Xie et al. 2020]
J r
lay

Handcrafted controllers & FSMs - RL frameworks (learn locomotion without reference data).

= Advance of motion-free character control:

= Pros: could generalize to novel morphologies.

- MNUNG RANUNG S



Prior Methods: Musculoskeletal Character Control

%
- / |
Motion Capture Reference N
marching walk ‘

[Lee et al. 2014]

[Wang et al. 2012]

Direction and Speed Control

<@
:lg:

P

[Feng et al. 2023] y \ [Schumacher et al. 2025]

J %z\t\\
Ny, —

= Advance of musculoskeletal character control:

Biological objectives & trajectory-optimization - learning-based methods (w/ or w/o motion data).

= \We revisit motion-free method:

Learning latent control policies for diverse & morphology-adaptive locomotion.
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Method
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= We adopt a ControlVAE [Yao et al. 2023]-likes architecture, but with some modifications.

= 1) Conditional VAE is guided by goal signal rather than reference motion.

= 2) World model predicts the energy expenditure as well. (Original: state-transition only)

>! Posterior
.| Encoder
1 Decoder
. U g i
: Prior latent z, (Control Policy)
Encoder N

Motion-free Latent Space

v

action,

World Model

Physics
Simulation

S
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» Goal: target velocity, posture, energy, and facing direction (randomly assigned during training).

= Character state: position, velocities, linear and angular velocities (of all links).

= | atent vector: 64-dim vector.

= Action: muscle activation (control signals for muscle dynamics).

R : World Model
Posterior
goal .| Encoder
Decoder Physics
: o— ((lontrol Poli¢y) ” Simulation
.|  Prior latent z, action, Y
Encodel N A

SX\

Motion-free Latent Space
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The model is trained by repeating the following three stages in each iteration.

R : World Model
Posterior
goal, .| Encoder
1 Decoder Physics
- o ' > Simulation
| _Prior | iatent z, (Control Policy) action,
Encoder N A

SX\

Motion-free Latent Space
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= 1st stage: Generating simulation trajectories (Goal, action, state transitions, energy expenditure).

- Stored in trajectory buffer and used in 2" and 3'd stages for updating each network.

Trajectory Buffer
>| Posterior
goal, ——Encoder
Physics
‘ Prior Simulation I
VW 1 ;‘

Motion-free Latent Space
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2nd stage: Updating world model (to predict ground truth state transitions and energy expenditure).

(CTT T Emm N
I State : :
Buff
| Prediction Loss ! Trajectory uffer T
e e o _
state,
actiont—’ World Model —_— statet+1
>| Posterior energy,
goal, .| Encoder
A Decoder Physics
' O—| (Control Polic — Simulation
. Prior latent z, ( y) action.
Encoder - :

JX\

Motion-free Latent Space
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= 3rdstage: Encoder and decoder are updated with proposed locomotion objective loss (using world model).

: Locomotlon Objective Loss W|th -
| Temporally Averaged Terms }

r-------------------------------“-‘HF“‘;‘;“:—:‘;‘:’# ------------- | 4
| — e i
I R P ; r--- World Model
; *| Posterior [ .- B i
[ N
goal .| Encoder | | .- ¥ i
““““ I .
] Decoder i Physics
: U | (Control Polic - Simulation
R E:;I:;Irer latent z, ( ) action,

SX\

Motion-free Latent Space
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Loss Function

—

Lobjective = Lye; + Lgir + Lheight + Lup + Lpose + Lenergy

Control Objective Balancing Objective Biomechanical Objective

SIGGRAPH %

15 -18 December 2025 ¢ Hong Kong Convention and Exhibition Centre ¢ ASIA.SIGGRAPH.ORG/2025 ‘é’ ASl A 2025

HONG KONG %




Loss Formulation: Per-step vs Temporally Averaged %

Lobjective — Lvel T Ldir + Lheight T Lup T Lpose T Lenergy

= Per-step loss has proven effective in imitation-based frameworks, because reference trajectories naturally

exhibit rhythmic variation.

= However, out motion-free setting lacking such patterns.

| Tt
Letep (T} xe) = 2=+ > 7'+ 1% —
P = " SIGGRAPH
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Loss Formulation: Per-step vs Temporally Averaged

*

Lobjective — Lvel T Ldir + Lheight T Lup T Lpose T Lenergy

= We introduce the temporally averaged loss to promote biologically plausible locomotion by accounting for
natural oscillations in movement.

= This loss compares averages of the and target states over a short temporal window (32 steps).
Tp—-1 T,—1
_ 1 -, . 1 X,
Lavg (B ) = = Y v m—=—- > vt
P = P 4=
t=0 t=0 1
Tp—1

_ 1 _
Letep (T} xe) = 2=+ > 7'+ 1% —
p = SIGGRAPH &
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Loss Function

*

+ Lheight T Lup T Lpose T Lenergy

Lobjective —

Lye; = Lavg ({Wlt}» {velt})

» Character averaged root (pelvis) speed - target speed ([0, 4.5] m/s during training).

Ly = Lstep ({M}: {dirt})

= Character root (pelvis) facing direction - target direction (360° during training).

SIGGRAPH 3
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Loss Function (Balancing)

%

Lobjective — Lvel T Ldir + Lheight T Lup T Lpose T Lenergy

Lheight = Lstep({heightt}r {heightt})
= Character root (pelvis) height = target height (to avoid falling).

Lup - Lavg ({up:}, {up:})

= Character averaged root (pelvis) up direction - global up axis (to maintain an upright posture).

SIGGRAPH &
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Loss Function (Biomechanical) %

Lobjective = Lye; + Lgir + Lheight T Lup T Lpose T Lenergy

Lpose — Lavg (P {pe)

= Character’s averaged posture = target posture (default: rest pose).

Lenergy — Lstep ({e:}. {e])

= Character’s metabolic energy consumption = target energy value (default: zero energy).

- MNUNG RANUNG S



Results

*

- FreeMusco Framework Trained for Various Locomotion
Behaviors

15 - 18 December 2025
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Motion-free Latent Space
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Humanoid Locomotion

Goal Velocity Only Goal Velocity + Direction

= We can control moving velocity and facing direction of the Humanoid.
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Humanoid Locomotion

Goal Velocity + Energy

= Low target energy - walking.

= High target energy - transitions to running (activating most of the muscles).

- MNUNG RANUNG S



Humanoid Locomotion

8

QL TR
™ S 'y
Ly /A

= e

\
\

i
e 2R (W

Goal Velocity + Energy + Pose

Goal Velocity + Energy + Pose
= Target posture and energy expenditure are controllable at runtime.

= The character can adapt to both symmetric and asymmetric lower-body postures.

i

3
;

N\
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Ostrich Locomotion

Goal Velocity Only Goal Velocity + Energy + Pose

= QOur motion-free approach enables learning locomotion for non-human characters like an ostrich.

- MNUNG RANUNG S



Chimanoid Locomotion

Goal Velocity Only

= Chimanoid learns a natural quadrupedal gait:
- Our motion-free framework can generate locomotion behaviors adapted to character’s morphology,

without relying on motion priors.

- MNUNG RANUNG S



Emergent Gait Strategies Across Morphologies
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Humanoid: Goal Velocity + Energy

Chimanoid: Goal Velocity + Energy

= Chimanoid: bipedal gait (high energy) - quadrupedal gait (as energy decreases).

= Humanoid: never adopts quadrupedal gaits.

- Energy-efficient gait depend on morphology and can naturally emerge in our motion-free framework.
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.

Random Sampling From Latent Space

= |earned latent space (unit hypersphere, ||z|| = 1)
enabling random sampling to generate diverse

locomotion.
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Results

*

- High-Level Control Policies Trained for Downstream Tasks

Task goal =——————p

>

\ 4

High-Level
Control
Policy
5 >
Prior latent z,
Encoder

AN

Motion-free Latent Space

Decoder
(Control Policy)

—

action,

s

Physics Simulation

A
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Point Goal Navigation

=3
= Goal input: target position (relative).
= Reward: distance to target.
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Path Following (Ribbon-shape)

Y
s
2
S
v\?

=

-—
\\

= Goal input: four consecutive target positions (relative).
= Reward: distance to the next target.

_, SIGGRAPH §
€ ssinzoas

e ASIA.SIGGRAPH.ORG/2025

Hong Kong Convention and Exhibition Centre

15 -18 December 2025 o




*

Effect of Temporally Averaged Loss Formulation
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Ablation for Lpose Lobjective = Lye; + Lgir + Lheight + Lup Lenergy

Control Balancing Biomechanical
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Temporally Averaged L. (Ours) Per-step L.

Per-step Lse

= Rigid frame-level pose matching.

= Slightly crouched, short-stepped gait with suppressed pelvic rotation. SIGGRAPH &
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Ablation for Lup Lobjective = Lvel + Ldir + Lheight Lup i Lpose + Lenergy

Control Balancing Biomechanical

R —

|
|

= [ &
Temporally Averaged L,,,, (Ours) Per-step L,

i

’
(

| /
I

Per-step L.,

= Strongly constrains pelvic dynamics.

= Pelvic rotation appears nearly rigid without natural oscillation.
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*

Comparison with Torque-Actuated Humanoid
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Comparison with Torque-Agtuated Humanpid

Torque-Actuated

Muscle-Actuated (Ours)

\ i

3
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%
1

Torque-Actuated (with manually tuned torque limits)

» (Top-Left) Torque-actuated humanoid failed to

learn even basic balancing behavior.

= (Top-Right) Even with manual tuning of joint torque

limits, it only learned an unnatural locomotion.
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Conclusion & Discussion
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Discussion

Target pose: Target pose:
Standing pose with straight arms Standing pose with slightly bent elbows

Learning with target poses featuring slightly bend elbows.

- Mitigates the straight and stiffness arm artifact.
SIGGRAPH &
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Contributions

= Motion-free latent control learning: Learn locomotion and latent-based control from musculoskeletal %
models without motion capture. ‘

= Cross-character generalization / Morphology-adaptive: Apply to humanoid, non-humanoid, and synthetic
characters with morphologically adaptive behaviors.

= Locomotion objective loss / Temporally averaged formulation: Integrate control, balance, biomechanics,
and temporal averaging to induce natural gait cycles.

= Diverse behavior modulation: Randomize targets and energy during training for flexible control of form and

intensity.

Future work

= Reducing manual tuning efforts & finding optimal target postures.
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¥

FreeMusco: Motion-Free Learning of Latent Control for

Morphology-Adaptive Locomotion in Musculoskeletal Characters

Minkwan Kim, Yoonsang Lee* (Hanyang University)

Come to our table to try the demo!
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