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▪ Existing motion capture datasets → we can generate a wide variety of realistic human motions.

▪ But what if motion capture is difficult or infeasible—such as for animals or imaginary creatures?

Motivation

[Park et al. 2025]



Humanoid Ostrich Chimanoid

FreeMusco

▪ We propose a motion-free framework that learns a latent space of morphology-adaptive locomotion

behaviors in various musculoskeletal characters.

▪ The model is trained without motion data, based only on morphology and biomechanics. It generalizes to 

non-human characters (e.g., Ostrich) and synthetic characters (e.g., Chimanoid).



Humanoid Ostrich Chimanoid

FreeMusco

▪ We propose a motion-free framework that learns a latent space of morphology-adaptive locomotion

behaviors in various musculoskeletal characters.

▪ The model is trained without motion data, based only on morphology and biomechanics. It generalizes to 

non-human characters (e.g., Ostrich) and synthetic characters (e.g., Chimanoid).

▪ The learned latent space enables high-level control, like goal navigation and path following.



Prior Works



Prior Methods: Motion-Driven Character Control

▪ Advance of motion-driven character control:                                                                                     

Mocap-based feedback control → DRL, imitation learning and generative models.

▪ Pros: Imitating diverse behaviors / Cons: constrained by the distribution of demonstration data.

[Lee et al. 2010] [Peng et al. 2018]

[Yao et al. 2022] [Tessler et al. 2024]



[Hodgins et al. 1995]

Prior Methods: Motion-Free Character Control

▪ Advance of motion-free character control:                                                                                       

Handcrafted controllers & FSMs → RL frameworks (learn locomotion without reference data).

▪ Pros: could generalize to novel morphologies.

[Yu et al. 2018]

[Yin et al. 2007]

[Xie et al. 2020]



Prior Methods: Musculoskeletal Character Control

▪ Advance of musculoskeletal character control:                                                                                

Biological objectives & trajectory-optimization → learning-based methods (w/ or w/o motion data). 

▪ We revisit motion-free method:

Learning latent control policies for diverse & morphology-adaptive locomotion.

[Wang et al. 2012]

[Feng et al. 2023]

[Lee et al. 2014]

[Schumacher et al. 2025]



Method
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▪ We adopt a ControlVAE [Yao et al. 2023]-likes architecture, but with some modifications.

▪ 1) Conditional VAE is guided by goal signal rather than reference motion.

▪ 2) World model predicts the energy expenditure as well. (Original: state-transition only)

goalt

World Model
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▪ Goal: target velocity, posture, energy, and facing direction (randomly assigned during training).

▪ Character state: position, velocities, linear and angular velocities (of all links). 

▪ Latent vector: 64-dim vector.

▪ Action: muscle activation (control signals for muscle dynamics).

World Model
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▪ The model is trained by repeating the following three stages in each iteration.

World Model
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▪ 1st stage: Generating simulation trajectories (Goal, action, state transitions, energy expenditure).

→ Stored in trajectory buffer and used in 2nd  and 3rd stages for updating each network.

Trajectory Buffer

goalt

energyt
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▪ 2nd stage: Updating world model (to predict ground truth state transitions and energy expenditure).

World Model

Trajectory Buffer
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Locomotion Objective Loss with 

Temporally Averaged Terms 

▪ 3rd stage: Encoder and decoder are updated with proposed locomotion objective loss (using world model).

goalt



𝑳𝒐𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 = 𝑳𝒗𝒆𝒍 + 𝑳𝒅𝒊𝒓 + 𝑳𝒉𝒆𝒊𝒈𝒉𝒕 + 𝑳𝒖𝒑 + 𝑳𝒑𝒐𝒔𝒆 + 𝑳𝒆𝒏𝒆𝒓𝒈𝒚

Control Objective Balancing Objective Biomechanical Objective

Loss Function



𝑳𝒐𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 = 𝑳𝒗𝒆𝒍 + 𝑳𝒅𝒊𝒓 + 𝑳𝒉𝒆𝒊𝒈𝒉𝒕 + 𝑳𝒖𝒑 + 𝑳𝒑𝒐𝒔𝒆 + 𝑳𝒆𝒏𝒆𝒓𝒈𝒚
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▪ Per-step loss has proven effective in imitation-based frameworks, because reference trajectories naturally 

exhibit rhythmic variation.

▪ However, out motion-free setting lacking such patterns.

Loss Formulation: Per-step vs Temporally Averaged



▪ We introduce the temporally averaged loss to promote biologically plausible locomotion by accounting for 

natural oscillations in movement.

▪ This loss compares averages of the simulated and target states over a short temporal window (32 steps).

𝑳𝒐𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 = 𝑳𝒗𝒆𝒍 + 𝑳𝒅𝒊𝒓 + 𝑳𝒉𝒆𝒊𝒈𝒉𝒕 + 𝑳𝒖𝒑 + 𝑳𝒑𝒐𝒔𝒆 + 𝑳𝒆𝒏𝒆𝒓𝒈𝒚
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Loss Formulation: Per-step vs Temporally Averaged



𝑳𝒐𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 = 𝑳𝒗𝒆𝒍 + 𝑳𝒅𝒊𝒓 + 𝑳𝒉𝒆𝒊𝒈𝒉𝒕 + 𝑳𝒖𝒑 + 𝑳𝒑𝒐𝒔𝒆 + 𝑳𝒆𝒏𝒆𝒓𝒈𝒚

𝑳𝒗𝒆𝒍 = 𝑳𝒂𝒗𝒈 𝒗𝒆𝒍𝒕 , 𝒗𝒆𝒍𝒕

▪ Character averaged root (pelvis) speed → target speed ([0, 4.5] m/s during training).

Loss Function (Control)

𝑳𝒅𝒊𝒓 = 𝑳𝒔𝒕𝒆𝒑 𝒅𝒊𝒓𝒕 , 𝒅𝒊𝒓𝒕

▪ Character root (pelvis) facing direction → target direction (360° during training).



𝑳𝒖𝒑 = 𝑳𝒂𝒗𝒈 𝒖𝒑𝒕 , 𝒖𝒑𝒕

▪ Character averaged root (pelvis) up direction → global up axis (to maintain an upright posture).

𝑳𝒉𝒆𝒊𝒈𝒉𝒕 = 𝑳𝒔𝒕𝒆𝒑 𝒉𝒆𝒊𝒈𝒉𝒕𝒕 , 𝒉𝒆𝒊𝒈𝒉𝒕𝒕

▪ Character root (pelvis) height ≥ target height (to avoid falling).

𝑳𝒐𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 = 𝑳𝒗𝒆𝒍 + 𝑳𝒅𝒊𝒓 + 𝑳𝒉𝒆𝒊𝒈𝒉𝒕 + 𝑳𝒖𝒑 + 𝑳𝒑𝒐𝒔𝒆 + 𝑳𝒆𝒏𝒆𝒓𝒈𝒚

Loss Function (Balancing)



𝑳𝒆𝒏𝒆𝒓𝒈𝒚 = 𝑳𝒔𝒕𝒆𝒑 ഥ𝒆𝒕 , 𝒆𝒕

▪ Character’s metabolic energy consumption → target energy value (default: zero energy).

𝑳𝒐𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 = 𝑳𝒗𝒆𝒍 + 𝑳𝒅𝒊𝒓 + 𝑳𝒉𝒆𝒊𝒈𝒉𝒕 + 𝑳𝒖𝒑 + 𝑳𝒑𝒐𝒔𝒆 + 𝑳𝒆𝒏𝒆𝒓𝒈𝒚

𝑳𝒑𝒐𝒔𝒆 = 𝑳𝒂𝒗𝒈 𝒑𝒕 , 𝒑𝒕

▪ Character’s averaged posture → target posture (default: rest pose).

Loss Function (Biomechanical)



Results

- FreeMusco Framework Trained for Various Locomotion 
Behaviors
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▪ We can control moving velocity and facing direction of the Humanoid.

Humanoid Locomotion

Goal Velocity Only Goal Velocity + Direction



▪ Low target energy → walking.

▪ High target energy → transitions to running (activating most of the muscles).

Humanoid Locomotion

Goal Velocity + Energy



▪ Target posture and energy expenditure are controllable at runtime.

▪ The character can adapt to both symmetric and asymmetric lower-body postures.

Humanoid Locomotion

Goal Velocity + Energy + Pose Goal Velocity + Energy + Pose



▪ Our motion-free approach enables learning locomotion for non-human characters like an ostrich.

Ostrich Locomotion

Goal Velocity Only Goal Velocity + Energy + PoseGoal Velocity Only



▪ Chimanoid learns a natural quadrupedal gait:

→ Our motion-free framework can generate locomotion behaviors adapted to character’s morphology,

without relying on motion priors. 

Chimanoid Locomotion

Goal Velocity Only



▪ Chimanoid: bipedal gait (high energy) → quadrupedal gait (as energy decreases).

▪ Humanoid: never adopts quadrupedal gaits. 

→ Energy-efficient gait depend on morphology and can naturally emerge in our motion-free framework.

Emergent Gait Strategies Across Morphologies

Chimanoid: Goal Velocity + Energy Humanoid: Goal Velocity + Energy



▪ Learned latent space (unit hypersphere, ||z|| = 1) 

enabling random sampling to generate diverse 

locomotion.

Random Sampling From Latent Space



Results

- High-Level Control Policies Trained for Downstream Tasks
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▪ Goal input: target position (relative). 

▪ Reward: distance to target.

Point Goal Navigation



▪ Goal input: four consecutive target positions (relative).

▪ Reward: distance to the next target.

Path Following (Ribbon-shape)



Effect of Temporally Averaged Loss Formulation



𝑳𝒐𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 = 𝑳𝒗𝒆𝒍 + 𝑳𝒅𝒊𝒓 + 𝑳𝒉𝒆𝒊𝒈𝒉𝒕 + 𝑳𝒖𝒑 + 𝑳𝒑𝒐𝒔𝒆 + 𝑳𝒆𝒏𝒆𝒓𝒈𝒚

Control Balancing Biomechanical

Per-step 𝑳𝒑𝒐𝒔𝒆

▪ Rigid frame-level pose matching. 

▪ Slightly crouched, short-stepped gait with suppressed pelvic rotation.

Ablation for 𝑳𝒑𝒐𝒔𝒆

Temporally Averaged 𝑳𝒑𝒐𝒔𝒆 (Ours) Per-step 𝑳𝒑𝒐𝒔𝒆



Per-step 𝑳𝒖𝒑

▪ Strongly constrains pelvic dynamics.

▪ Pelvic rotation appears nearly rigid without natural oscillation.

𝑳𝒐𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 = 𝑳𝒗𝒆𝒍 + 𝑳𝒅𝒊𝒓 + 𝑳𝒉𝒆𝒊𝒈𝒉𝒕 + 𝑳𝒖𝒑 + 𝑳𝒑𝒐𝒔𝒆 + 𝑳𝒆𝒏𝒆𝒓𝒈𝒚

Control Balancing Biomechanical

Ablation for 𝑳𝒖𝒑

Temporally Averaged 𝑳𝒖𝒑 (Ours) Per-step 𝑳𝒖𝒑



Comparison with Torque-Actuated Humanoid



▪ (Top-Left) Torque-actuated humanoid failed to 

learn even basic balancing behavior.

▪ (Top-Right) Even with manual tuning of joint torque 

limits, it only learned an unnatural locomotion.

Comparison with Torque-Actuated Humanoid

Muscle-Actuated (Ours)

Torque-Actuated Torque-Actuated (with manually tuned torque limits)



Conclusion & Discussion



Learning with target poses featuring slightly bend elbows. 

→ Mitigates the straight and stiffness arm artifact.

Target pose:
Standing pose with slightly bent elbows

Target pose:
Standing pose with straight arms

Discussion



Contributions

▪ Motion-free latent control learning: Learn locomotion and latent-based control from musculoskeletal 

models without motion capture.

▪ Cross-character generalization / Morphology-adaptive: Apply to humanoid, non-humanoid, and synthetic 

characters with morphologically adaptive behaviors.

▪ Locomotion objective loss / Temporally averaged formulation: Integrate control, balance, biomechanics, 

and temporal averaging to induce natural gait cycles.

▪ Diverse behavior modulation: Randomize targets and energy during training for flexible control of form and 

intensity.

Future work

▪ Reducing manual tuning efforts & finding optimal target postures.



Come to our table to try the demo!

FreeMusco: Motion-Free Learning of Latent Control for 

Morphology-Adaptive Locomotion in Musculoskeletal Characters

Minkwan Kim, Yoonsang Lee* (Hanyang University)
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